1
|
Tang T, Park S, Devereaux TP, Lin Y, Jia C. Molecular geometry specific Monte Carlo simulation of the efficacy of diamond crystal formation from diamondoids. Commun Chem 2024; 7:194. [PMID: 39218958 PMCID: PMC11366742 DOI: 10.1038/s42004-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Diamondoids are a class of organic molecules with the carbon skeletons isostructural to nano-diamond, and have been shown to be promising precursors for diamond formation. In this work, the formation of diamond crystals from various diamondoid molecule building blocks was studied using our developed molecular geometry specific Monte Carlo method. We maintained the internal carbon skeletons of the diamondoid molecules, and investigated how the carbon-carbon bonds form between diamondoid molecules and how efficient the process is to form diamond crystals. The simulations show that higher diamondoid molecules can produce structures closer to a diamond crystal compared with lower diamondoid molecules. Specifically, using higher diamondoid molecules, larger bulk diamond crystals are formed with fewer vacancies. The higher propensity of certain diamondoids to form diamond crystals reveals insights into the microscopic processes of diamond formation under high-pressure high-temperature conditions.
Collapse
Affiliation(s)
- Ta Tang
- Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, 94305, CA, USA
| | - Sulgiye Park
- Department of Earth and Planetary Sciences, Stanford University, 367 Panama Mall, Stanford, 94305, CA, USA
| | - Thomas Peter Devereaux
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, 94305, CA, USA
- Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025, CA, USA
| | - Yu Lin
- Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, 94025, CA, USA.
| | - Chunjing Jia
- Department of Physics and Quantum Theory Project, University of Florida, 2001 Museum Road, Gainesville, 32611, FL, USA.
| |
Collapse
|
2
|
Tzeng YK, Ke F, Jia C, Liu Y, Park S, Han M, Frost M, Cai X, Mao WL, Ewing RC, Cui Y, Devereaux TP, Lin Y, Chu S. Improving the creation of SiV centers in diamond via sub-μs pulsed annealing treatment. Nat Commun 2024; 15:7251. [PMID: 39179592 PMCID: PMC11343833 DOI: 10.1038/s41467-024-51523-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Silicon-vacancy (SiV) centers in diamond are emerging as promising quantum emitters in applications such as quantum communication and quantum information processing. Here, we demonstrate a sub-μs pulsed annealing treatment that dramatically increases the photoluminescence of SiV centers in diamond. Using a silane-functionalized adamantane precursor and a laser-heated diamond anvil cell, the temperature and energy conditions required to form SiV centers in diamond were mapped out via an optical thermometry system with an accuracy of ±50 K and a 1 μs temporal resolution. Annealing scheme studies reveal that pulsed annealing can obviously minimize the migration of SiV centers out of the diamond lattice, and a 2.5-fold increase in the number of emitting centers was achieved using a series of 200-ns pulses at a 50 kHz repetition rate via acousto-optic modulation. Our study provides a novel pulsed annealing treatment approach to improve the efficiency of the creation of SiV centers in diamond.
Collapse
Affiliation(s)
- Yan-Kai Tzeng
- Department of Physics, Stanford University, Stanford, California, 94305, USA
| | - Feng Ke
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford, California, 94305, USA
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004, Qinhuangdao, Hebei, China
| | - Chunjing Jia
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- Department of Physics, University of Florida, Gainesville, FL, 32608, USA
| | - Yayuan Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Sulgiye Park
- Department of Earth and Planetary Sciences, Stanford University, Stanford, California, 94305, USA
| | - Minkyung Han
- Department of Earth and Planetary Sciences, Stanford University, Stanford, California, 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Mungo Frost
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Xinxin Cai
- Department of Physics and Astrophysics, University of Rochester, Rochester, New York, 14627, USA
| | - Wendy L Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford, California, 94305, USA
| | - Rodney C Ewing
- Department of Earth and Planetary Sciences, Stanford University, Stanford, California, 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Thomas P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Yu Lin
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA.
| | - Steven Chu
- Department of Physics, Stanford University, Stanford, California, 94305, USA.
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, 94305, USA.
- Department of Energy Science and Engineering, Stanford University, Stanford, California, 94305, USA.
| |
Collapse
|
3
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
4
|
Fokin AA, Bakhonsky VV, Pashenko AE, Bakhiiev E, Becker J, Kunz S, Schreiner PR. Synthesis and Functionalization of Isomeric Sesquihomodiamantenes. J Org Chem 2023; 88:14172-14177. [PMID: 37728993 DOI: 10.1021/acs.joc.3c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
anti- and syn-sesquihomodiamantenes (SDs) were prepared and structurally characterized. anti-SD and parent sesquihomoadamantene were CH-bond functionalized by utilizing a phase-transfer protocol. The density functional theory-computed ionization potentials of unsaturated diamondoid dimers correlate well with the experimental oxidation potentials obtained from cyclic voltammetry. Similar geometries ensue for both the reduced and ionized SD states, whose persistence is supported by the β-hydrogen's spatial sheltering. This makes SDs promising building blocks for the construction of diamond materials with high stability and carrier mobility.
Collapse
Affiliation(s)
- Andrey A Fokin
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Beresteiskyi Ave. 37, 03056 Kiev, Ukraine
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Vladyslav V Bakhonsky
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Beresteiskyi Ave. 37, 03056 Kiev, Ukraine
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Alexander E Pashenko
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Beresteiskyi Ave. 37, 03056 Kiev, Ukraine
| | - Emirali Bakhiiev
- Department of Organic Chemistry, Igor Sikorsky Kiev Polytechnic Institute, Beresteiskyi Ave. 37, 03056 Kiev, Ukraine
| | - Jonathan Becker
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Simon Kunz
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
5
|
Lyu T, Archambault CM, Hathaway E, Zhu X, King C, Abu-Amara L, Wang S, Kunz M, Kim MJ, Cui J, Yao Y, Yu T, Officer T, Xu M, Wang Y, Yan H. Self-Limiting Sub-5 nm Nanodiamonds by Geochemistry-Inspired Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300659. [PMID: 37072896 DOI: 10.1002/smll.202300659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Controlling diamond structures with nanometer precision is fundamentally challenging owing to their extreme and far-from-equilibrium synthetic conditions. State-of-the-art techniques, including detonation, chemical vapor deposition, mechanical grinding, and high-pressure-high-temperature synthesis, yield nanodiamond particles with a broad distribution of sizes. Despite many efforts, the direct synthesis of nanodiamonds with precisely controlled diameters remains elusive. Here the geochemistry-inspired synthesis of sub-5 nm nanodiamonds with sub-nanometer size deviation is described. High-pressure-high-temperature treatment of uniform iron carbide nanoparticles embedded in iron oxide matrices yields nanodiamonds with tunable diameters down to 2.13 and 0.22 nm standard deviation. A self-limiting, redox-driven, and diffusion-controlled solid-state reaction mechanism is proposed and supported by in situ X-ray diffraction, ex situ characterizations, and computational modeling. This work provides a unique mechanism for the precise control of nanostructured diamonds under extreme conditions and paves the road for the full realization of their potential in emerging technologies.
Collapse
Affiliation(s)
- Tengteng Lyu
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | | | - Evan Hathaway
- Department of Physics, University of North Texas, Denton, TX, 76205, USA
| | - Xiangyu Zhu
- Department of Materials Science and Engineering, University of Texas Dallas, Richardson, TX, 75080, USA
| | - Carol King
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Lama Abu-Amara
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Sicheng Wang
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| | - Martin Kunz
- Lawrence Berkeley National Laboratory, Berkely, CA, 94720, USA
| | - Moon J Kim
- Department of Materials Science and Engineering, University of Texas Dallas, Richardson, TX, 75080, USA
| | - Jingbiao Cui
- Department of Physics, University of North Texas, Denton, TX, 76205, USA
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Tony Yu
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Timothy Officer
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Man Xu
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Yanbin Wang
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Hao Yan
- Department of Chemistry, University of North Texas, Denton, TX, 76205, USA
| |
Collapse
|
6
|
Zhang T, Wang L, Wang J, Wang Z, Gupta M, Guo X, Zhu Y, Yiu YC, Hui TKC, Zhou Y, Li C, Lei D, Li KH, Wang X, Wang Q, Shao L, Chu Z. Multimodal dynamic and unclonable anti-counterfeiting using robust diamond microparticles on heterogeneous substrate. Nat Commun 2023; 14:2507. [PMID: 37130871 PMCID: PMC10154296 DOI: 10.1038/s41467-023-38178-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
The growing prevalence of counterfeit products worldwide poses serious threats to economic security and human health. Developing advanced anti-counterfeiting materials with physical unclonable functions offers an attractive defense strategy. Here, we report multimodal, dynamic and unclonable anti-counterfeiting labels based on diamond microparticles containing silicon-vacancy centers. These chaotic microparticles are heterogeneously grown on silicon substrate by chemical vapor deposition, facilitating low-cost scalable fabrication. The intrinsically unclonable functions are introduced by the randomized features of each particle. The highly stable signals of photoluminescence from silicon-vacancy centers and light scattering from diamond microparticles can enable high-capacity optical encoding. Moreover, time-dependent encoding is achieved by modulating photoluminescence signals of silicon-vacancy centers via air oxidation. Exploiting the robustness of diamond, the developed labels exhibit ultrahigh stability in extreme application scenarios, including harsh chemical environments, high temperature, mechanical abrasion, and ultraviolet irradiation. Hence, our proposed system can be practically applied immediately as anti-counterfeiting labels in diverse fields.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jing Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Zhongqiang Wang
- Dongguan Institute of Opto-Electronics, Peking University, Dongguan, China
| | - Madhav Gupta
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yau Chuen Yiu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Primemax Biotech Limited, Hong Kong, China
| | | | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Can Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dangyuan Lei
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Kwai Hei Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
| | - Xinqiang Wang
- Dongguan Institute of Opto-Electronics, Peking University, Dongguan, China
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Qi Wang
- Dongguan Institute of Opto-Electronics, Peking University, Dongguan, China.
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China.
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Bonsir M, Kennedy AR, Geerts Y. Synthesis and Structural Properties of Adamantane-Substituted Amines and Amides Containing an Additional Adamantane, Azaadamantane or Diamantane Moiety. ChemistryOpen 2022; 11:e202200031. [PMID: 35243816 PMCID: PMC9535505 DOI: 10.1002/open.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/11/2022] [Indexed: 11/12/2022] Open
Abstract
Introduction of adamantane moieties on diamondoids such as adamantane, 2-azaadamantane or diamantane by amide formation and reduction to the corresponding amine was performed in a straightforward and easy way by amidation under Schotten-Baumann conditions and reduction with BH3 ⋅ THF. The obtained amides and amines were studied in terms of structural properties towards the perspective of transformation into nanodiamonds. Crystal structure and dynamic NMR experiments of the most crowded amide obtained gave structural insights into the effect of bulkiness and steric strain on out-of-planarity of amide bonds (16.0°) and the kinetics and thermodynamics of amide bond rotation (ΔG≠ 298K =11.5-13.3 kcal ⋅ mol-1 ).
Collapse
Affiliation(s)
- Maxime Bonsir
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/011050BruxellesBelgium
| | - Alan R. Kennedy
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowScotlandUK
| | - Yves Geerts
- Laboratoire de Chimie des PolymèresFaculté des SciencesUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 206/011050BruxellesBelgium
- International Solvay Institutes for Physics and ChemistryUniversité Libre de Bruxelles (ULB)Boulevard du Triomphe, CP 2311050BruxellesBelgium
| |
Collapse
|
8
|
Nanodiamonds as Possible Tools for Improved Management of Bladder Cancer and Bacterial Cystitis. Int J Mol Sci 2022; 23:ijms23158183. [PMID: 35897760 PMCID: PMC9329713 DOI: 10.3390/ijms23158183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nanodiamonds (NDs) are a class of carbon nanomaterials with sizes ranging from a few nm to micrometres. Due to their excellent physical, chemical and optical properties, they have recently attracted much attention in biomedicine. In addition, their exceptional biocompatibility and the possibility of precise surface functionalisation offer promising opportunities for biological applications such as cell labelling and imaging, as well as targeted drug delivery. However, using NDs for selective targeting of desired biomolecules within a complex biological system remains challenging. Urinary bladder cancer and bacterial cystitis are major diseases of the bladder with high incidence and poor treatment options. In this review, we present: (i) the synthesis, properties and functionalisation of NDs; (ii) recent advances in the study of various NDs used for better treatment of bladder cancer and (iii) bacterial cystitis; and (iv) the use of NDs in theranostics of these diseases.
Collapse
|
9
|
Chang SLY, Reineck P, Krueger A, Mochalin VN. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS NANO 2022; 16:8513-8524. [PMID: 35605109 DOI: 10.1021/acsnano.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanodiamonds are at the heart of a plethora of emerging applications in areas ranging from nanocomposites and tribology to nanomedicine and quantum sensing. The development of alternative synthesis methods, a better understanding, and the availability of ultrasmall nanodiamonds of less than 3 nm size with a precisely engineered composition, including the particle surface and atomic defects in the diamond crystal lattice, would mark a leap forward for many existing and future applications. Yet today, we are unable to accurately control nanodiamond composition at the atomic scale, nor can we reliably create and isolate particles in this size range. In this perspective, we discuss recent advances, challenges, and opportunities in the synthesis, characterization, and application of ultrasmall nanodiamonds. We particularly focus on the advantages of bottom-up synthesis of these particles and critically assess the physicochemical properties of ultrasmall nanodiamonds, which significantly differ from those of larger particles and bulk diamond.
Collapse
Affiliation(s)
- Shery L Y Chang
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Vadym N Mochalin
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
10
|
Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. MATERIALS 2022; 15:ma15134434. [PMID: 35806559 PMCID: PMC9267296 DOI: 10.3390/ma15134434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023]
Abstract
Recently, the scientific community experienced two revolutionary events. The first was the synthesis of single-layer graphene, which boosted research in many different areas. The second was the advent of quantum technologies with the promise to become pervasive in several aspects of everyday life. In this respect, diamonds and nanodiamonds are among the most promising materials to develop quantum devices. Graphene and nanodiamonds can be coupled with other carbon nanostructures to enhance specific properties or be properly functionalized to tune their quantum response. This contribution briefly explores photoelectron spectroscopies and, in particular, X-ray photoelectron spectroscopy (XPS) and then turns to the present applications of this technique for characterizing carbon nanomaterials. XPS is a qualitative and quantitative chemical analysis technique. It is surface-sensitive due to its limited sampling depth, which confines the analysis only to the outer few top-layers of the material surface. This enables researchers to understand the surface composition of the sample and how the chemistry influences its interaction with the environment. Although the chemical analysis remains the main information provided by XPS, modern instruments couple this information with spatial resolution and mapping or with the possibility to analyze the material in operando conditions at nearly atmospheric pressures. Examples of the application of photoelectron spectroscopies to the characterization of carbon nanostructures will be reviewed to present the potentialities of these techniques.
Collapse
|
11
|
Li S, Francaviglia L, Kohler DD, Jones ZR, Zhao ET, Ogletree DF, Weber-Bargioni A, Melosh NA, Hamers RJ. Ag-Diamond Core-Shell Nanostructures Incorporated with Silicon-Vacancy Centers. ACS MATERIALS AU 2021; 2:85-93. [PMID: 36855764 PMCID: PMC9888652 DOI: 10.1021/acsmaterialsau.1c00027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Silicon-vacancy (SiV) centers in diamond have attracted attention as highly stable fluorophores for sensing and as possible candidates for quantum information science. While prior studies have shown that the formation of hybrid diamond-metal structures can increase the rates of optical absorption and emission, many practical applications require diamond plasmonic structures that are stable in harsh chemical and thermal environments. Here, we demonstrate that Ag nanospheres, produced both in quasi-random arrays by thermal dewetting and in ordered arrays using electron-beam lithography, can be completely encapsulated with a thin diamond coating containing SiV centers, leading to hybrid core-shell nanostructures exhibiting extraordinary chemical and thermal stability as well as enhanced optical properties. Diamond shells with a thickness on the order of 20-100 nm are sufficient to encapsulate and protect the Ag nanostructures with different sizes ranging from 20 nm to hundreds of nanometers, allowing them to withstand heating to temperatures of 1000 °C and immersion in harsh boiling acid for 24 h. Ultrafast photoluminescence lifetime and super-resolution optical imaging experiments were used to study the SiV properties on and off the core-shell structures, which show that the SiV on core-shell structures have higher brightness and faster decay rate. The stability and optical properties of the hybrid Ag-diamond core-shell structures make them attractive candidates for high-efficiency imaging and quantum-based sensing applications.
Collapse
Affiliation(s)
- Shuo Li
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States,Stanford
Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States,Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Luca Francaviglia
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel D. Kohler
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Zachary R. Jones
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eric T. Zhao
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - D. Frank Ogletree
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander Weber-Bargioni
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicholas A. Melosh
- Stanford
Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States,Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States,
| | - Robert J. Hamers
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States,
| |
Collapse
|
12
|
Joshi P, Riley P, Gupta S, Narayan RJ, Narayan J. Advances in laser-assisted conversion of polymeric and graphitic carbon into nanodiamond films. NANOTECHNOLOGY 2021; 32:432001. [PMID: 34198280 DOI: 10.1088/1361-6528/ac1097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Nanodiamond (ND) synthesis by nanosecond laser irradiation has sparked tremendous scientific and technological interest. This review describes efforts to obtain cost-effective ND synthesis from polymers and carbon nanotubes (CNT) by the melting route. For polymers, ultraviolet (UV) irradiation triggers intricate photothermal and photochemical processes that result in photochemical degradation, subsequently generating an amorphous carbon film; this process is followed by melting and undercooling of the carbon film at rates exceeding 109K s-1. Multiple laser shots increase the absorption coefficient of PTFE, resulting in the growth of 〈110〉 oriented ND film. Multiple laser shots on CNTs result in pseudo topotactic diamond growth to form a diamond fiber. This technique is useful for fabricating 4-50 nm sized NDs. These NDs can further be employed as seed materials that are used in bulk epitaxial growth of microdiamonds using chemical vapor deposition, particularly for use with non-lattice matched substrates that formerly did not form continuous and adherent films. We also provide insights into biocompatible precursors for ND synthesis such as polybenzimidazole fiber. ND fabrication by UV irradiation of graphitic and polymeric carbon opens up a pathway for preparing selective coatings of polymer-diamond composites, doped nanodiamonds, and graphene composites for quantum computing and biomedical applications.
Collapse
Affiliation(s)
- Pratik Joshi
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States of America
| | - Parand Riley
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States of America
| | - Siddharth Gupta
- Intel Corporation, Rolner Acres Campus 3, OR, 97124, United States of America
| | - Roger J Narayan
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States of America
| | - Jagdish Narayan
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States of America
| |
Collapse
|
13
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
14
|
Mandal S. Nucleation of diamond films on heterogeneous substrates: a review. RSC Adv 2021; 11:10159-10182. [PMID: 35423515 PMCID: PMC8695650 DOI: 10.1039/d1ra00397f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Diamond thin films are known to have properties similar to bulk diamond and have applications in both industry and fundamental studies in academia. The high surface energy of diamond makes it extremely difficult to grow diamond films on foreign substrates. Hence, to grow diamond films on non-diamond substrates, a nucleation step is needed. In this review various techniques used for diamond nucleation/seeding will be discussed. At present electrostatic seeding by diamond nanoparticles is the most commonly used seeding technique for nanocrystalline growth. In this technique the substrate is dipped in a nanodiamond solution to form a mono layer of diamond seeds. These seeds when exposed to appropriate conditions grow to form diamond layers. This technique is suitable for most substrates. For heteroepitaxial growth, bias enhanced nucleation is the primary technique. In this technique the substrate is biased to form diamond nuclei in the initial stages of growth. This technique can be used for any conducting flat surface. For growth on ceramics, polishing by diamond grit or electrostatic seeding can be used. Polishing the ceramics with diamond powder leaves small diamond particles embedded in the substrate. These small particles then act as seeds for subsequent diamond growth. Apart from these techniques, chemical nucleation, interlayer driven nucleation and mixed techniques have been discussed. The advantages and disadvantages of individual techniques have also been discussed. Growth of diamond film on heterogeneous substrates assisted by nucleation/seeding.![]()
Collapse
Affiliation(s)
- Soumen Mandal
- School of Physics and Astronomy, Cardiff University Cardiff UK
| |
Collapse
|
15
|
Ma X, Liu X, Li Y, Xi X, Yao Q, Fan J. Influence of crystallization temperature on fluorescence of n-diamond quantum dots. NANOTECHNOLOGY 2020; 31:505712. [PMID: 33021232 DOI: 10.1088/1361-6528/abb72d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanodiamonds are popular biological labels because of their superior mechanical and optical properties. Their surfaces bridging the core and surrounding medium play a key role in determining their bio-linkage and photophysical properties. n-diamond is a mysterious carbon allotrope whose crystal structure remains debated. We study the influence of the crystallization temperature on the fluorescence properties of the colloidal n-diamond quantum dots (n-DQDs) with sizes of several nanometers. They exhibit multiband fluorescence across the whole visible region which depends sensitively on the crystallization temperature. Their surfaces turn from hydrophobic ones rich of sp2-bonded carbon into hydrophilic ones rich of carboxyl derivatives and hydroxyl groups as the crystallization temperature increases. The different surface states correlated with the surface structures account for the distinct fluorescence properties of the n-DQDs crystallized at different temperatures. These high-purity ultrasmall n-DQDs with tunable surface chemistry and fluorescence properties are promising multicolor biomarkers and lighting sources.
Collapse
Affiliation(s)
- Xuanxuan Ma
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaoyu Liu
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Yuanyuan Li
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiaonan Xi
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qianqin Yao
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
16
|
Park S, Abate II, Liu J, Wang C, Dahl JEP, Carlson RMK, Yang L, Prakapenka VB, Greenberg E, Devereaux TP, Jia C, Ewing RC, Mao WL, Lin Y. Facile diamond synthesis from lower diamondoids. SCIENCE ADVANCES 2020; 6:eaay9405. [PMID: 32128417 PMCID: PMC7034983 DOI: 10.1126/sciadv.aay9405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/04/2019] [Indexed: 05/19/2023]
Abstract
Carbon-based nanomaterials have exceptional properties that make them attractive for a variety of technological applications. Here, we report on the use of diamondoids (diamond-like, saturated hydrocarbons) as promising precursors for laser-induced high-pressure, high-temperature diamond synthesis. The lowest pressure and temperature (P-T) conditions that yielded diamond were 12 GPa (at ~2000 K) and 900 K (at ~20 GPa), respectively. This represents a substantially reduced transformation barrier compared with diamond synthesis from conventional (hydro)carbon allotropes, owing to the similarities in the structure and full sp3 hybridization of diamondoids and bulk diamond. At 20 GPa, diamondoid-to-diamond conversion occurs rapidly within <19 μs. Molecular dynamics simulations indicate that once dehydrogenated, the remaining diamondoid carbon cages reconstruct themselves into diamond-like structures at high P-T. This study is the first successful mapping of the P-T conditions and onset timing of the diamondoid-to-diamond conversion and elucidates the physical and chemical factors that facilitate diamond synthesis.
Collapse
Affiliation(s)
- Sulgiye Park
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Iwnetim I. Abate
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jin Liu
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Chenxu Wang
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jeremy E. P. Dahl
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert M. K. Carlson
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Liuxiang Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Vitali B. Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Eran Greenberg
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Thomas P. Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chunjing Jia
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Rodney C. Ewing
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Wendy L. Mao
- Department of Geological Sciences, Stanford University, Stanford, CA 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Yu Lin
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Corresponding author.
| |
Collapse
|
17
|
Mei Y, Chen C, Fan D, Jiang M, Li X, Hu X. Enhanced SiV photoluminescence by oxidation-induced nano-structures on diamond particle surfaces. NANOSCALE 2019; 11:656-662. [PMID: 30565628 DOI: 10.1039/c8nr07354f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We successfully constructed nanostructures on the surface of diamond particles by oxidation, which drastically enhanced their silicon-vacancy (SiV) photoluminescence (PL) intensity. The {100} plane of the diamond crystal initially had a smooth surface and strong anti-oxidation ability, which converted to a nano-pyramid structure with the sides resembling a {111} crystal plane orientation after oxidation. The {111} plane originally presented vertically layered or scale-like structures, but exhibited irregular nanoporous structures with some ridges perpendicular to the {111} plane in the edge area after oxidation. Since the crystal orientation of these nano-structures matches the <111> aligned split-vacancy structure of the SiV center, the collection efficiency of SiV luminescence increased, such that the SiV emission intensity increased by 27-fold and 4-fold for the nano-pyramid and the irregular nano-porous structure, respectively. Oxidation also significantly improved the crystal quality of diamond, such that the lattice stress around the SiV color center reduced, narrowing the linewidth of the SiV PL peak to nearly 3 nm. This study provides a feasible way to optimize SiV photoluminescent properties by building nanostructures on the surface of diamond particles.
Collapse
Affiliation(s)
- Yingshuang Mei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | | | | | | | | | | |
Collapse
|
18
|
Experimental measurement of the diamond nucleation landscape reveals classical and nonclassical features. Proc Natl Acad Sci U S A 2018; 115:8284-8289. [PMID: 30068609 DOI: 10.1073/pnas.1803654115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.
Collapse
|
19
|
Chipaux M, van der Laan KJ, Hemelaar SR, Hasani M, Zheng T, Schirhagl R. Nanodiamonds and Their Applications in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704263. [PMID: 29573338 DOI: 10.1002/smll.201704263] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/25/2018] [Indexed: 05/21/2023]
Abstract
Diamonds owe their fame to a unique set of outstanding properties. They combine a high refractive index, hardness, great stability and inertness, and low electrical but high thermal conductivity. Diamond defects have recently attracted a lot of attention. Given this unique list of properties, it is not surprising that diamond nanoparticles are utilized for numerous applications. Due to their hardness, they are routinely used as abrasives. Their small and uniform size qualifies them as attractive carriers for drug delivery. The stable fluorescence of diamond defects allows their use as stable single photon sources or biolabels. The magnetic properties of the defects make them stable spin qubits in quantum information. This property also allows their use as a sensor for temperature, magnetic fields, electric fields, or strain. This Review focuses on applications in cells. Different diamond materials and the special requirements for the respective applications are discussed. Methods to chemically modify the surface of diamonds and the different hurdles one has to overcome when working with cells, such as entering the cells and biocompatibility, are described. Finally, the recent developments and applications in labeling, sensing, drug delivery, theranostics, antibiotics, and tissue engineering are critically discussed.
Collapse
Affiliation(s)
- Mayeul Chipaux
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Kiran J van der Laan
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Simon R Hemelaar
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| | - Masoumeh Hasani
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, 518036, Shenzhen, China
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713, AW, Groningen, The Netherlands
| |
Collapse
|
20
|
Zalogina AS, Savelev RS, Ushakova EV, Zograf GP, Komissarenko FE, Milichko VA, Makarov SV, Zuev DA, Shadrivov IV. Purcell effect in active diamond nanoantennas. NANOSCALE 2018; 10:8721-8727. [PMID: 29701731 DOI: 10.1039/c7nr07953b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We suggest a novel class of active nanoantennas based on diamond nanoparticles with embedded nitrogen-vacancy centres coupled to Mie resonances of nanoparticles. We theoretically study the optical properties of such nanoantennas including the field enhancement and Purcell effect, and experimentally demonstrate the enhancement of the fluorescence rate of the emitters due to particle resonances, as compared to a nonresonant regime. Our results pave the way towards active dielectric nanophotonics for quantum light sources, bioimaging, and quantum information processing.
Collapse
|
21
|
Zhang JL, Sun S, Burek MJ, Dory C, Tzeng YK, Fischer KA, Kelaita Y, Lagoudakis KG, Radulaski M, Shen ZX, Melosh NA, Chu S, Lončar M, Vučković J. Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond. NANO LETTERS 2018; 18:1360-1365. [PMID: 29377701 DOI: 10.1021/acs.nanolett.7b05075] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quantum emitters are an integral component for a broad range of quantum technologies, including quantum communication, quantum repeaters, and linear optical quantum computation. Solid-state color centers are promising candidates for scalable quantum optics due to their long coherence time and small inhomogeneous broadening. However, once excited, color centers often decay through phonon-assisted processes, limiting the efficiency of single-photon generation and photon-mediated entanglement generation. Herein, we demonstrate strong enhancement of spontaneous emission rate of a single silicon-vacancy center in diamond embedded within a monolithic optical cavity, reaching a regime in which the excited-state lifetime is dominated by spontaneous emission into the cavity mode. We observe 10-fold lifetime reduction and 42-fold enhancement in emission intensity when the cavity is tuned into resonance with the optical transition of a single silicon-vacancy center, corresponding to 90% of the excited-state energy decay occurring through spontaneous emission into the cavity mode. We also demonstrate the largest coupling strength (g/2π = 4.9 ± 0.3 GHz) and cooperativity (C = 1.4) to date for color-center-based cavity quantum electrodynamics systems, bringing the system closer to the strong coupling regime.
Collapse
Affiliation(s)
| | | | - Michael J Burek
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | | | | | | | | | | | | | - Zhi-Xun Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | - Nicholas A Melosh
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| | | | - Marko Lončar
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | | |
Collapse
|
22
|
Yang B, Li J, Guo L, Huang N, Liu L, Zhai Z, Long W, Jiang X. Fabrication of silicon-vacancy color centers in diamond films: tetramethylsilane as a new dopant source. CrystEngComm 2018. [DOI: 10.1039/c7ce02181j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A diamond film featuring a structure of nano-crystals separated with (100) micro-grains displays a maximum in the PL intensity of SiV centers.
Collapse
Affiliation(s)
- Bing Yang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| | - Junhao Li
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| | - Liang Guo
- Shenyang Military Region Architectural Design Institute
- Shenyang 110000
- China
| | - Nan Huang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| | - Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| | - Wenjing Long
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research (IMR)
- Chinese Academy of Sciences (CAS)
- Shenyang 110016
- China
| |
Collapse
|