1
|
Yang JL, Wang HJ, Qi X, Zheng QN, Tian JH, Zhang H, Li JF. Understanding the Behaviors of Plasmon-Induced Hot Carriers and Their Applications in Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412551 DOI: 10.1021/acsami.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Photocatalysis driven by plasmon-induced hot carriers has been gaining increasing attention. Recent studies have demonstrated that plasmon-induced hot carriers can directly participate in photocatalytic reactions, leading to great enhancement in solar energy conversion efficiency, by improving the catalytic activity or changing selectivity. Nevertheless, the utilization efficiency of hot carriers remains unsatisfactory. Therefore, how to correctly understand the generation and transfer process of hot carriers, as well as accurately differentiate between the possible mechanisms, have become a key point of attention. In this review, we overview the fundamental processes and mechanisms underlying hot carrier generation and transport, followed by highlighting the importance of hot carrier monitoring methods and related photocatalytic reactions. Furthermore, possible strategies for the further characterization of plasmon-induced hot carriers and boosting their utilization efficiency have been proposed. We hope that a comprehensive understanding of the fundamental behaviors of hot carriers can aid in designing more efficient photocatalysts for plasmon-induced photocatalytic reactions.
Collapse
Affiliation(s)
- Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Hong-Jia Wang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Qing-Na Zheng
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
2
|
Sampathi S, Tiriya PK, Dodoala S, Junnuthula V, Dyawanapelly S. Development of Biocompatible Ciprofloxacin-Gold Nanoparticle Coated Sutures for Surgical Site Infections. Pharmaceutics 2022; 14:pharmaceutics14102130. [PMID: 36297565 PMCID: PMC9608442 DOI: 10.3390/pharmaceutics14102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Surgical site infections (SSIs) are mainly observed after surgeries that use biomaterials. The aim of this present work was to develop ciprofloxacin hydrochloride (CPH)-loaded gold nanoparticles. These ciprofloxacin-gold nanoparticles were coated onto a sterile surgical suture using an adsorption technique, followed by rigidization via ionotropic crosslinking using sodium alginate. Furthermore, UV-visible spectroscopy, infrared spectroscopy, and scanning electron microscopy were used to characterize the samples. The particle size of the nanoparticles was 126.2 ± 13.35 nm with a polydispersity index of 0.134 ± 0.03, indicating nanosize formation with a monodispersed system. As per the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines, stability studies were performed for 30 days under the following conditions: 2-8 °C, 25 ± 2 °C/60 ± 5% RH, and 40 ± 2 °C/75 ± 5% RH. For both Gram-negative and Gram-positive bacteria, the drug-coupled nanoparticle-laden sutures showed a twofold higher zone of inhibition compared with plain drug-coated sutures. In vitro drug release studies showed a prolonged release of up to 180 h. Hemolysis and histopathology studies displayed these sutures' acceptable biocompatibility with the healing of tissue in Albino Swiss mice. The results depict that the use of antibiotic-coated sutures for preventing surgical site infection for a long duration could be a viable clinical option.
Collapse
Affiliation(s)
- Sunitha Sampathi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Hyderabad 502329, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
- Correspondence: (S.S.); (V.J.); (S.D.)
| | - Pankaj Kumar Tiriya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Sujatha Dodoala
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Viswavidyalayam, Tirupati 517502, India
| | - Vijayabhaskarreddy Junnuthula
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
- Correspondence: (S.S.); (V.J.); (S.D.)
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Mumbai 400019, India
- Correspondence: (S.S.); (V.J.); (S.D.)
| |
Collapse
|
3
|
Fahri AN, Heryanto H, Tahir D. Mie Scattering Theory for Identifying Surface Plasmon Resonances (SPR) by the Finite-Size Model: Theoretical Study of Gold-Silver Core–Shell Nanospheres. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Li H, Xia X, Zang J, Tan X, Wang Z, Xu X, Du M. Oyster (Crassostrea gigas) ferritin can efficiently reduce the damage of Pb 2+in vivo by electrostatic attraction. Int J Biol Macromol 2022; 210:365-376. [PMID: 35500778 DOI: 10.1016/j.ijbiomac.2022.04.175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 02/08/2023]
Abstract
Heavy metal ions pollution can cause damage to human body through food, so the development of a new kind of macromolecular that can remove heavy metal ions damage has a good application prospect. The possibilities of removing heavy metal ions from food system with ferritin were studied in this paper. In this study, oyster ferritin (GF1) can resistant to denaturation induced by Pb2+, Cd2+, Cr3+ and still maintains its basic structure. GF1 can bind more Pb2+, Cd2+, Cr3+ than recombinant human H-chain ferritin (rHuHF), especially Pb2+, and the findings suggest that each GF1 can capture about 51.42 Pb2+ in solution. The hard and soft acids and base also verifies that Pb2+ have stronger binding ability to the key amino acids at the outer end of the three-fold symmetry channel. Cells preprotected by ferritin could resistant to heavy metal ions. And GF1 can reduce the high blood lead in mice and may play a role in alleviating lead poisoning in vivo. All findings demonstrated that GF1 can be used as a novel macromolecule to bind heavy metal ions, and the study can broaden the research scope of ferritin in contaminated food systems.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xianbing Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Ou W, Zhou B, Shen J, Zhao C, Li YY, Lu J. Plasmonic metal nanostructures: concepts, challenges and opportunities in photo-mediated chemical transformations. iScience 2021; 24:101982. [PMID: 33521596 PMCID: PMC7820137 DOI: 10.1016/j.isci.2020.101982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmonic metal nanostructures (PMNs) are characterized by the plasmon oscillation of conduction band electron in response to external radiation, enabling strong light absorption and scattering capacities and near-field amplification. Owing to these enhanced light-matter interactions, PMNs have garnered extensive research interest in the past decades. Notably, a growingly large number of reports show that the energetics and kinetics of chemical transformations on PMNs can be modified upon photoexcitation of their plasmons, giving rise to a new paradigm of manipulating the reaction rate and selectivity of chemical reactions. On the other hand, there is urgent need to achieve clear understanding of the mechanism underlying the photo-mediated chemical transformations on PMNs for unleashing their full potential in converting solar energy to chemicals. In this perspective, we review current fundamental concepts of photo-mediated chemical transformations executed at PMNs. Three pivotal mechanistic questions, i.e., thermal and nonthermal effects, direct and indirect charge transfer processes, and the specific impacts of plasmon-induced potentials, are explored based on recent studies. We highlight the critical aspects in which major advancements should be made to facilitate the rational design and optimization of photo-mediated chemical transformations on PMNs in the future.
Collapse
Affiliation(s)
- Weihui Ou
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Binbin Zhou
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Junda Shen
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Chenghao Zhao
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yang Yang Li
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jian Lu
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen 518057, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Li H, Tan X, Xia X, Zang J, El-Seedi H, Wang Z, Du M. Improvement of thermal stability of oyster (Crassostrea gigas) ferritin by point mutation. Food Chem 2020; 346:128879. [PMID: 33406454 DOI: 10.1016/j.foodchem.2020.128879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022]
Abstract
Ferritin can be widely used as functional nanomaterial. But the physiological activity of ferritin can be damaged under excessive temperatures, which affect the self-assembly property. In this study, point mutation was produced in Asp120 to Gly120 of ferritin amino acid sequence and the heat resistance was improved significantly. The thermal denaturation temperature of mutated ferritin is 89.17 °C and has increased by 13 °C more than the wild-type oyster ferritin. The effect of thermal treatment on the denaturation, aggregation state, particle size and the structure of ferritin was not changed before 90 °C. The computational modeling and analysis indicated that mutated ferritin promotes the overall structural stability assembly via decreasing the interaction energies of 62 percent energies in 3-fold interface. Improving the thermal stability of oyster ferritin by point mutation enhances its applications as a food ingredient.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hesham El-Seedi
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
7
|
Liyanage T, Nagaraju M, Johnson M, Muhoberac BB, Sardar R. Reversible Tuning of the Plasmoelectric Effect in Noble Metal Nanostructures Through Manipulation of Organic Ligand Energy Levels. NANO LETTERS 2020; 20:192-200. [PMID: 31765167 DOI: 10.1021/acs.nanolett.9b03588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ligand-controlled tuning of localized surface plasmon resonance (LSPR) properties of noble metal nanostructures is fundamentally important for various optoelectronic applications such as photocatalysis, photovoltaics, and sensing. Here we demonstrate that the free carrier concentration of gold triangular nanoprisms (Au TNPs) can be tuned up to 12% upon functionalization of their surface with different para-substituted thiophenolate (X-Ph-S-) ligands. We achieve this unprecedentedly large optical response (plasmoelectric effect) in TNPs through the selective manipulation of electronic processes at the Au-thiolate interface. Interestingly, thiophenolates with electron withdrawing (donating) groups (X) produce λLSPR blue (red) shifts with broadening (narrowing) of localized surface plasmon resonance peak (λLSPR) line widths. Surprisingly, these experimental results are opposite to a straightforward application of the Drude model. Utilizing density functional theory calculations, we develop here a frontier molecular orbital approach of Au-thiophenolate interactions in the solid-state to delineate the observed spectral response. Importantly, all the spectroscopic properties are fully reversible by exchanging thiophenolates containing electron withdrawing groups with thiophenolates having electron donating groups, and vice versa. On the basis of the experimental data and calculations, we propose that the delocalization of electrons wave function controls the free carrier concentration of Au and thus the LSPR properties rather than simple electronic properties (inductive and/or resonance effects) of thiophenolates. This is further supported by the experimentally determined work functions, which are tunable over 1.9 eV in the X-Ph-S-passivated Au TNPs. We believe that our unexpected finding has great potential to guide in developing unique noble metal nanostructure-organic ligand hybrid nanoconjugates, which could allow us to bypass the complications associated with off-resonance LSPR activation of noble metal-doped semiconductor nanocrystals for various surface plasmon-driven applications.
Collapse
Affiliation(s)
- Thakshila Liyanage
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Malpuri Nagaraju
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Merrell Johnson
- Department of Physics , Purdue University Fort Wayne , 2101 E. Coliseum Boulevard , Fort Wayne , Indiana 46805 , United States
| | - Barry B Muhoberac
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology and §Integrated Nanosystems Development Institute , Indiana University-Purdue University Indianapolis , 402 N. Blackford Street, LD326 , Indianapolis , Indiana 46202 , United States
| |
Collapse
|
8
|
Berbeć S, Żołądek S, Kulesza PJ, Pałys B. Silver nanoparticles stabilized by polyoxotungstates. Influence of the silver – Polyoxotungstate molar ratio on UV/Vis spectra and SERS characteristics. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Czajkowski KM, Świtlik D, Langhammer C, Antosiewicz TJ. Effective Optical Properties of Inhomogeneously Distributed Nanoobjects in Strong Field Gradients of Nanoplasmonic Sensors. PLASMONICS (NORWELL, MASS.) 2018; 13:2423-2434. [PMID: 30595678 PMCID: PMC6280852 DOI: 10.1007/s11468-018-0769-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
Accurate and efficient modeling of discontinuous, randomly distributed entities is a computationally challenging task, especially in the presence of large and inhomogeneous electric near-fields of plasmons. Simultaneously, the anisotropy of sensed entities and their overlap with inhomogeneous fields means that typical effective medium approaches may fail at describing their optical properties. Here, we extend the Maxwell Garnett mixing formula to overcome this limitation by introducing a gradient within the effective medium description of inhomogeneous nanoparticle layers. The effective medium layer is divided into slices with a varying volume fraction of the inclusions and, consequently, a spatially varying effective permittivity. This preserves the interplay between an anisotropic particle distribution and an inhomogeneous electric field and enables more accurate predictions than with a single effective layer. We demonstrate the usefulness of the gradient effective medium in FDTD modeling of indirect plasmonic sensing of nanoparticle sintering. First of all, it yields accurate results significantly faster than with explicitly modeled nanoparticles. Moreover, by employing the gradient effective medium approach, we prove that the detected signal is proportional to not only the nanoparticle size but also its size dispersion and potentially shape. This implies that the simple volume fraction parameter is insufficient to properly homogenize these types of nanoparticle layers and that in order to quantify optically the state of the layer more than one independent measurement should be carried out. These findings extend beyond nanoparticle sintering and could be useful in analysis of average signals in both plasmonic and dielectric systems to unveil dynamic changes in exosomes or polymer brushes, phase changes of nanoparticles, or quantifying light absorption in plasmon assisted catalysis.
Collapse
Affiliation(s)
- Krzysztof M. Czajkowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Dominika Świtlik
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomasz J. Antosiewicz
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|