1
|
Nguyen Q, Kim EM, Ding Y, Janssen A, Wang C, Li KK, Kim J, Fichthorn KA, Xia Y. Elucidating the Role of Reduction Kinetics in the Phase-Controlled Growth on Preformed Nanocrystal Seeds: A Case Study of Ru. J Am Chem Soc 2024; 146:12040-12052. [PMID: 38554283 PMCID: PMC11066843 DOI: 10.1021/jacs.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
This study demonstrates the crucial role of reduction kinetics in phase-controlled synthesis of noble-metal nanocrystals using Ru nanocrystals as a case study. We found that the reduction kinetics played a more important role than the templating effect from the preformed seed in dictating the crystal structure of the deposited overlayers despite their intertwined effects on successful epitaxial growth. By employing two different polyols, a series of Ru nanocrystals with tunable sizes of 3-7 nm and distinct patterns of crystal phase were synthesized by incorporating different types of Ru seeds. Notably, the use of ethylene glycol and triethylene glycol consistently resulted in the formation of Ru shell in natural hexagonal close-packed (hcp) and metastable face-centered cubic (fcc) phases, respectively, regardless of the size and phase of the seed. Quantitative measurements and theoretical calculations suggested that this trend was a manifestation of the different reduction kinetics associated with the precursor and the chosen polyol, which, in turn, affected the reduction pathway (solution versus surface) and packing sequence of the deposited Ru atoms. This work not only underscores the essential role of reduction kinetics in controlling the packing of atoms and thus the phase taken by Ru nanocrystals but also suggests a potential extension to other noble-metal systems.
Collapse
Affiliation(s)
- Quynh
N. Nguyen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Eun Mi Kim
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Yong Ding
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Annemieke Janssen
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Kei Kwan Li
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Junseok Kim
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Kristen A. Fichthorn
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16803, United States
| | - Younan Xia
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Ramamoorthy RK, Yildirim E, Rodriguez-Ruiz I, Roblin P, Lacroix LM, Diaz A, Parmar R, Teychené S, Viau G. Sub-millisecond microfluidic mixers coupled to time-resolved in situ photonics to study ultra-fast reaction kinetics: the case of ultra-small gold nanoparticle synthesis. LAB ON A CHIP 2024; 24:327-338. [PMID: 38088259 DOI: 10.1039/d3lc00778b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
We report a continuous microreactor platform achieving sub-millisecond homogeneous reagent mixing (∼300 μs) for a time-resolved study on the synthesis of ultra-small gold nanoparticles (NPs). The microreactor (coupled with small angle X-ray scattering, UV-vis, and X-ray absorption spectroscopy for in situ and in operando characterizations), operates within mixing time frames below system characteristic times, providing a unique opportunity to deepen the comprehension of reaction and phase transition pathways with unprecedented details. The microreactor channel length can be approximated to a given reaction time when operated in continuous mode and steady state. As a result, the system can be statically investigated, eliminating technique-dependent probing time constraints and local inhomogeneities caused by mixing issues. We have studied Au(0) NP formation kinetics from Au(III) precursors complexed with oleylamine in organic media, using triisopropylsilane as a reducing agent. The existence of Au(III)/Au(I) prenucleation clusters and the formation of a transient Au(I) lamellar phase under certain conditions, before the onset of Au(0) formation, have been observed. Taking advantage of the high frequency time-resolved information, we propose and model two different reaction pathways associated with the presence or absence of the Au(I) lamellar phase. In both cases, non-classical pathways leading to the formation of NPs are discussed.
Collapse
Affiliation(s)
- Raj Kumar Ramamoorthy
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
- Fédération de Recherche FeRMAT, CNRS, INP, INSA, UPS, Université de Toulouse, Toulouse, France
| | - Ezgi Yildirim
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| | - Isaac Rodriguez-Ruiz
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Lise-Marie Lacroix
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
- Institut Universitaire de France (IUF), 103 boulevard Saint Michel, 75005 Paris, France
| | - Ana Diaz
- Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Rohan Parmar
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Sébastien Teychené
- Laboratoire de Génie Chimique, CNRS, INP, UPS, Université de Toulouse, Toulouse, France.
| | - Guillaume Viau
- Laboratoire de Physique et Chimie des Nano-Objets UMR 5215 INSA, CNRS, UPS, Université de Toulouse, 135 avenue de Rangueil, F-31077 Toulouse cedex 4, France.
| |
Collapse
|
3
|
Zhao W, Tan R, Yang Y, Yang H, Wang J, Yin X, Wu D, Zhang T. Galvanic-Replacement-Assisted Synthesis of Nanostructured Silver-Surface for SERS Characterization of Two-Dimensional Polymers. SENSORS (BASEL, SWITZERLAND) 2024; 24:474. [PMID: 38257565 PMCID: PMC10819046 DOI: 10.3390/s24020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful technology in trace analysis. However, the wide applications of SERS in practice are limited by the expensive substrate materials and the complicated preparation processes. Here we report a simple and economical galvanic-replacement-assisted synthesis route to prepare Ag nanoparticles on Cu(0) foil (nanoAg@Cu), which can be directly used as SERS substrate. The fabrication process is fast (ca. 10 min) and easily scaled up to centimeters or even larger. In addition, the morphology of the nanoAg@Cu (with Ag particles size from 30 nm to 160 nm) can be adjusted by various additives (e.g., amino-containing ligands). Finally, we show that the as-prepared nanoAg@Cu can be used for SERS characterization of two-dimensional polymers, and ca. 298 times relative enhancement of Raman intensity is achieved. This work offers a simple and economical strategy for the scalable fabrication of silver-based SERS substrate in thin film analysis.
Collapse
Affiliation(s)
- Wenkai Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxiang Tan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China
| | - Yanping Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
4
|
Choi H, Choi Y, Min J, Ko K, Kim Y, Chougule SS, Khikmatulla D, Jung N. Origin and Formation Mechanism of Carbon Shell-Encapsulated Metal Nanoparticles for Powerful Fuel Cell Durability. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2862. [PMID: 37947707 PMCID: PMC10648549 DOI: 10.3390/nano13212862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) face technical issues of performance degradation due to catalyst dissolution and agglomeration in real-world operations. To address these challenges, intensive research has been recently conducted to introduce additional structural units on the catalyst surface. Among various concepts for surface modification, carbon shell encapsulation is known to be a promising strategy since the carbon shell can act as a protective layer for metal nanoparticles. As an interesting approach to form carbon shells on catalyst surfaces, the precursor ligand-induced formation is preferred due to its facile synthesis and tunable control over the carbon shell porosity. However, the origin of the carbon source and the carbon shell formation mechanism have not been studied in depth yet. Herein, this study aims to investigate carbon sources through the use of different precursors and the introduction of new methodologies related to the ligand exchange phenomenon. Subsequently, we provide new insights into the carbon shell formation mechanism using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Finally, the thermal stability and electrochemical durability of carbon shells are thoroughly investigated through in situ transmission electron microscopy (in situ TEM) and accelerated durability tests.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (H.C.); (Y.C.); (J.M.); (K.K.); (Y.K.); (S.S.C.); (D.K.)
| |
Collapse
|
5
|
Gendler D, Bi J, Mekan D, Warokomski A, Armstrong C, Hernandez-Pagan EA. Halide-driven polymorph selectivity in the synthesis of MnX (X = S, Se) nanoparticles. NANOSCALE 2023; 15:2650-2658. [PMID: 36722489 DOI: 10.1039/d2nr05854e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Devising synthetic strategies to control crystal structure is of great importance as materials properties are governed by structure. MnS is a great model system as it has three known stable polymorphs. Herein, we show the selective synthesis of colloidal wurtzite- and rock-salt-type MnS under identical reactions conditions changing only the manganese halide precursor. Mixtures of Mn halides or halide surrogate (e.g., NH4Cl) also enabled polymorph control. Powder X-ray diffraction aliquot studies of the reactions revealed the crystal structure at the onset of nucleation and that of the final product is the same, unlike the Ostwald ripening transformation observed in other systems. The halide-driven selectivity was also observed in the synthesis of manganese selenide nanoparticles. In this system, variation of the Mn halide precursor allowed access to the wurtzite- and rock salt-type polymorphs of MnSe, as well as the pyrite-MnSe2 phase. Based on this work, the mixing of metal salts might be a simple and effective strategy towards polymorph control and access materials with new crystal structures.
Collapse
Affiliation(s)
- Danielle Gendler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Jiaying Bi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Deep Mekan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Ashley Warokomski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Cameron Armstrong
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| | - Emil A Hernandez-Pagan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
6
|
Yi D, Marcelot C, Romana I, Tassé M, Fazzini PF, Peres L, Ratel-Ramond N, Decorse P, Warot-Fonrose B, Viau G, Serp P, Soulantica K. Etching suppression as a means to Pt dendritic ultrathin nanosheets by seeded growth. NANOSCALE 2023; 15:1739-1753. [PMID: 36598381 DOI: 10.1039/d2nr05105b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
2D ultrathin metal nanostructures are emerging materials displaying distinct physical and chemical properties compared to their analogues of different dimensionalities. Nanosheets of fcc metals are intriguing, as their crystal structure does not favour a 2D configuration. Thanks to their increased surface-to-volume ratios and the optimal exposure of low-coordinated sites, 2D metal nanostructures can be advantageously exploited in catalysis. Synthesis approaches to ultrathin nanosheets of pure platinum are scarce compared to other noble metals and to Pt-based alloys. Here, we present the selective synthesis of Pt ultrathin nansosheets by a simple seeded-growth method. The most crucial point in our approach is the selective synthesis of Pt seeds comprising planar defects, a main driving force for the 2D growth of metals with fcc structure. Defect engineering is employed here, not in order to disintegrate, but for conserving the defect comprising seeds. This is achieved by in situ elimination of the principal etching agent, chloride, which is present in the PtCl2 precursor. As a result of etching suppression, twinned nuclei, that are selectively formed during the early stage of nucleation, survive and grow to multipods comprising planar defects. Using the twinned multipods as seeds for the subsequent 2D overgrowth of Pt from Pt(acac)2 yields ultrathin dendritic nanosheets, in which the planar defects are conserved. Using phenylacetylene hydrogenation as a model reaction of selective hydrogenation, we compared the performance of Pt nanosheets to that of a commercial Pt/C catalyst. The Pt nanosheets show better stability and much higher selectivity to styrene than the commercial Pt/C catalyst for comparable activity.
Collapse
Affiliation(s)
- Deliang Yi
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Cécile Marcelot
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Idaline Romana
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Laurent Peres
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Nicolas Ratel-Ramond
- CEMES-CNRS, Université de Toulouse, CNRS, 29 rue Jeanne Marvig, 31055 Toulouse, France
| | - Philippe Decorse
- ITODYS, UMR 7086, CNRS, Université de Paris, F-75013 Paris, France
| | | | - Guillaume Viau
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| | - Philippe Serp
- LCC, CNRS-UPR 8241, ENSIACET, Université de Toulouse, 31030 Toulouse, France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS, Université de Toulouse, F-31077 Toulouse, France.
| |
Collapse
|
7
|
Nguyen QN, Wang C, Shang Y, Janssen A, Xia Y. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chem Rev 2022; 123:3693-3760. [PMID: 36547384 DOI: 10.1021/acs.chemrev.2c00468] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanocrystals offer a unique platform for tailoring the physicochemical properties of solid materials to enhance their performances in various applications. While most work on controlling their shapes revolves around symmetrical growth, the introduction of asymmetrical growth and thus symmetry breaking has also emerged as a powerful route to enrich metal nanocrystals with new shapes and complex morphologies as well as unprecedented properties and functionalities. The success of this route critically relies on our ability to lift the confinement on symmetry by the underlying unit cell of the crystal structure and/or the initial seed in a systematic manner. This Review aims to provide an account of recent progress in understanding and controlling asymmetrical growth and symmetry breaking in a colloidal synthesis of noble-metal nanocrystals. With a touch on both the nucleation and growth steps, we discuss a number of methods capable of generating seeds with diverse symmetry while achieving asymmetrical growth for mono-, bi-, and multimetallic systems. We then showcase a variety of symmetry-broken nanocrystals that have been reported, together with insights into their growth mechanisms. We also highlight their properties and applications and conclude with perspectives on future directions in developing this class of nanomaterials. It is hoped that the concepts and existing challenges outlined in this Review will drive further research into understanding and controlling the symmetry breaking process.
Collapse
Affiliation(s)
- Quynh N. Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Annemieke Janssen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia30332, United States
| |
Collapse
|
8
|
Perumal S, Atchudan R, Rühl E, Graf C. Controlled Synthesis of Platinum and Silver Nanoparticles Using Multivalent Ligands. NANOMATERIALS 2022; 12:nano12132294. [PMID: 35808130 PMCID: PMC9268602 DOI: 10.3390/nano12132294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
Here, the controlled formation of platinum nanoparticles (PtNPs) and silver nanoparticles (AgNPs) using amine-functionalized multivalent ligands are reported. The effects of reaction temperature and ligand multivalency on the growth kinetics, size, and shape of PtNPs and AgNPs were systematically studied by performing a stepwise and a one-step process. PtNPs and AgNPs were prepared in the presence of amine ligands using platinum (II) acetylacetonate and silver (I) acetylacetonate, respectively. The effects of ligands and temperature on the formation of PtNPs were studied using a transmission electron microscope (TEM). For the characterization of AgNPs, additionally, ultraviolet-visible (UV-Vis) absorption was employed. The TEM measurements revealed that PtNPs prepared at different temperatures (160–200 °C, in a stepwise process) are monodispersed and of spherical shape regardless of the ligand multivalency or reaction temperature. In the preparation of PtNPs by the one-step process, ligands affect the shape of the PtNPs, which can be explained by the affinity of the ligands. The TEM and UV-Vis absorption studies on the formation of AgNPs with mono-, di-, and trivalent ligands showed narrower size distributions, while increasing the temperature from 80 °C to 120 °C and with a trivalent ligand in a one-step process.
Collapse
Affiliation(s)
- Suguna Perumal
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry, Sejong University, Seoul 143747, Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Eckart Rühl
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Correspondence: (E.R.); (C.G.)
| | - Christina Graf
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany;
- Department of Chemistry and Biotechnology, Darmstadt University of Applied Sciences, 64295 Darmstadt, Germany
- Correspondence: (E.R.); (C.G.)
| |
Collapse
|
9
|
Wang Y, Satyavolu NSR, Yang H, Lu Y. Kinetic Reconstruction of DNA-Programed Plasmonic Metal Nanostructures with Predictable Shapes and Optical Properties. J Am Chem Soc 2022; 144:4410-4421. [PMID: 35234474 DOI: 10.1021/jacs.1c11333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is desirable to rationally engineer plasmonic metal nanostructures with sets of structural parameters that lead to specific functions. However, it is still challenging to predict the nanostructured outcome of a synthesis reaction by design because not only the exact kinetic path for the structural evolution is very complicated but also the relationships among various functional and structural parameters are often tangled. It is necessary to deconvolute the structure-function relationships and understand the co-evolution of structural and functional parameters as the nanostructures grow. DNA is a programable biomolecular capping ligand that was shown to be capable of precisely controlling the evolution of metal nanostructures. In this study, we systematically analyzed the evolution of two structural parameters and several functional parameters in the growth of Au-Ag nanostructures controlled by two DNA sequences. We deconvoluted the contributions from the two structural parameters in affecting the plasmonic properties in different kinetic and geometric domains. We further designed new nanostructures by exchanging DNA sequences in the growth environment, which also changed their evolution pathways. The resulting structural and functional parameters could be predictively tuned by the timing of the exchange. This study demonstrates the powerful toolbox provided by programable biomolecules in producing novel nanostructures in a predictable manner. It also shows that by understanding the kinetic evolution of the structural parameters and their relationships with the function parameters, it is possible to design the precise combinations of structural and functional parameters in the nanostructured products.
Collapse
Affiliation(s)
- Yiming Wang
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Nitya Sai Reddy Satyavolu
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Hong Yang
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Departments of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Tang R, Zhu Z, Li C, Xiao M, Wu Z, Zhang D, Zhang C, Xiao Y, Chu M, Genest A, Rupprechter G, Zhang L, Zhang X, He L. Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability. ACS MATERIALS LETTERS 2021; 3:1652-1659. [PMID: 34901871 PMCID: PMC8653414 DOI: 10.1021/acsmaterialslett.1c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/25/2021] [Indexed: 05/31/2023]
Abstract
Cascade catalysis of reverse water gas shift (RWGS) and well-established CO hydrogenation holds promise for the conversion of greenhouse gas CO2 and renewable H2 into liquid hydrocarbons and methanol under mild conditions. However, it remains a big challenge to develop low-temperature RWGS catalysts with high activity, selectivity, and stability. Here, we report the design of an efficient RWGS catalyst by encapsulating ruthenium clusters with the size of 1 nm inside hollow silica shells. The spatially confined structure prevents the sintering of Ru clusters while the permeable silica layer allows the diffusion of gaseous reactants and products. This catalyst with reduced particle sizes not only inherits the excellent activity of Ru in CO2 hydrogenation reactions but also exhibits nearly 100% CO selectivity and superior stability at 200-500 °C. The ability to selectively produce CO from CO2 at relatively low temperatures paves the way for the production of value-added fuels from CO2 and renewable H2.
Collapse
Affiliation(s)
- Rui Tang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhijie Zhu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chaoran Li
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengqi Xiao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhiyi Wu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dake Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chengcheng Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yi Xiao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyu Chu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Alexander Genest
- Institute
of Materials Chemistry, Technische Universität, Wien, Vienna 1060, Austria
| | - Günther Rupprechter
- Institute
of Materials Chemistry, Technische Universität, Wien, Vienna 1060, Austria
| | - Liang Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohong Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Le He
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials & Devices, Joint International
Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
11
|
Balakrishnan A, Groeneveld JD, Pokhrel S, Mädler L. Metal Sulfide Nanoparticles: Precursor Chemistry. Chemistry 2021; 27:6390-6406. [PMID: 33326141 PMCID: PMC8247956 DOI: 10.1002/chem.202004952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/20/2022]
Abstract
Fascination with and the need for evermore increasing efficiency, power, or strength have been the cornerstones for developing new materials and methods for their creation. Higher solar cell conversion efficiencies, increased battery storage power, and lightweight strong materials are some that have been at the forefront of attention for these efforts. Materials created for most applications start as simple chemical compounds. A study of how these chemicals have been used in the past can be used to create new materials and new methods of production. Herein, a class of materials that are valuable in a multitude of applications, metal sulfide nanoparticles, are examined, along with how they are being produced and how new methods can be established that will help to standardize and increase production capabilities. Precursor–solvent combinations that can be used to create metal sulfide nanoparticles in the gas phase are also explored.
Collapse
Affiliation(s)
- Adithya Balakrishnan
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Jan Derk Groeneveld
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Suman Pokhrel
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Lutz Mädler
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1.,Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| |
Collapse
|
12
|
Zakhtser A, Naitabdi A, Benbalagh R, Rochet F, Salzemann C, Petit C, Giorgio S. Chemical Evolution of Pt-Zn Nanoalloys Dressed in Oleylamine. ACS NANO 2021; 15:4018-4033. [PMID: 32786209 DOI: 10.1021/acsnano.0c03366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the shape, composition (from Pt95Zn5 to Pt77Zn23), and surface chemistry of Pt-Zn nanoparticles obtained by reduction of precursors M2+(acac)2- (M2+: Pt2+ and Zn2+) in oleylamine, which serves as both solvent and ligand. We show first that the addition of phenyl ether or benzyl ether determines the composition and shape of the nanoparticles, which point to an adsorbate-controlled synthesis. The organic (ligand)/inorganic (nanoparticles) interface is characterized on the structural and chemical level. We observe that the particles, after washing with ethanol, are coated with oleylamine and the oxidation products of the latter, namely, an aldimine and a nitrile. After exposure to air, the particles oxidize, covering themselves with a few monolayer thick ZnO film, which is certainly discontinuous when the particles are low in zinc. Pt-Zn particles are unstable and prone to losing Zn. We have strong indications that the driving force is the preferential oxidation of the less noble metal. Finally, we show that adsorption of CO on the surface of nanoparticles modifies the oxidation state of amine ligands and attribute it to the displacement of hydrogen adsorbed on Pt. All the structural and chemical information provided by the combination of electron microscopy and X-ray photoelectron spectroscopy allows us to give a fairly accurate picture of the surface of nanoparticles and to better understand why Pt-Zn alloys are efficient in certain electrocatalytic reactions such as the oxidation of methanol.
Collapse
Affiliation(s)
- Alter Zakhtser
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - Ahmed Naitabdi
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - Rabah Benbalagh
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - François Rochet
- Sorbonne Université, CNRS, LCPMR, UMR 7614, 4 Place Jussieu, 75005 Paris, France
| | - Caroline Salzemann
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Petit
- Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, 75005 Paris, France
| | - Suzanne Giorgio
- Aix Marseille Université, CNRS, CINaM, UMR 7325, 13288 Marseille, France
| |
Collapse
|
13
|
Wang M, Leff AC, Li Y, Woehl TJ. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with in Situ Liquid-Phase Transmission Electron Microscopy Synthesis. ACS NANO 2021; 15:2578-2588. [PMID: 33496576 DOI: 10.1021/acsnano.0c07131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Colloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid-phase transmission electron microscopy (LP-TEM) enables direct visualization of nanocrystal formation mechanisms that can inform discovery of design rules for nanocrystal synthesis, but it remains unclear whether the salient flask synthesis chemistry is preserved under electron beam irradiation during LP-TEM. Here, we demonstrate controlled in situ LP-TEM synthesis of alloyed AuCu nanocrystals while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes. Ex situ flask synthesis experiments formed alloyed nanocrystals containing on average 70 atomic% Au using heteronuclear metal thiolate complexes as a precursor, while gold-rich alloys with nearly no copper formed in their absence. Systematic dose rate-controlled in situ LP-TEM synthesis experiments established a range of electron beam synthesis conditions that formed alloyed AuCu nanocrystals that had statistically indistinguishable alloy composition, aggregation state, and particle size distribution shape compared to ex situ flask synthesis, indicating the flask synthesis chemistry was preserved under these conditions. Reaction kinetic simulations of radical-ligand reactions revealed that polymer capping ligands acted as effective hydroxyl radical scavengers during LP-TEM synthesis and prevented oxidation of metal thiolate complexes at low dose rates. Our results revealed a key role of the capping ligands aside from their well-known functions, which was to prevent copper oxidation and facilitate formation of prenucleation cluster intermediates via formation of metal thiolate complexes. This work demonstrates that complex ion precursor chemistry can be maintained during LP-TEM imaging, enabling probing nonclassical nanocrystal formation mechanisms with LP-TEM under reaction conditions representative of ex situ flask synthesis.
Collapse
Affiliation(s)
- Mei Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Asher C Leff
- Sensors and Electron Devices Directorate, Combat Capabilities Development Command, United States Army Research Laboratory, Adelphi, Maryland 20783, United States
- General Technical Services, LLC, Wall Township, New Jersey 07727, United States
| | - Yue Li
- Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
14
|
Nguyen QN, Chen R, Lyu Z, Xia Y. Using Reduction Kinetics to Control and Predict the Outcome of a Colloidal Synthesis of Noble-Metal Nanocrystals. Inorg Chem 2021; 60:4182-4197. [PMID: 33522790 DOI: 10.1021/acs.inorgchem.0c03576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improving the performance of noble-metal nanocrystals in various applications critically depends on our ability to manipulate their synthesis in a rational, robust, and controllable fashion. Different from a conventional trial-and-error approach, the reduction kinetics of a colloidal synthesis has recently been demonstrated as a reliable knob for controlling the synthesis of noble-metal nanocrystals in a deterministic and predictable manner. Here we present a brief Viewpoint on the recent progress in leveraging reduction kinetics for controlling and predicting the outcome of a synthesis of noble-metal nanocrystals. With a focus on Pd nanocrystals, we first offer a discussion on the correlation between the initial reduction rate and the internal structure of the resultant seeds. The kinetic approaches for controlling both nucleation and growth in a one-pot setting are then introduced with an emphasis on manipulation of the reduction pathways taken by the precursor. We then illustrate how to extend the strategy into a bimetallic system for the preparation of nanocrystals with different shapes and elemental distributions. Finally, the influence of speciation of the precursor on reduction kinetics is highlighted, followed by our perspectives on the challenges and future endeavors in achieving a controllable and predictable synthesis of noble-metal nanocrystals.
Collapse
Affiliation(s)
- Quynh N Nguyen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Li W, Taylor MG, Bayerl D, Mozaffari S, Dixit M, Ivanov S, Seifert S, Lee B, Shanaiah N, Lu Y, Kovarik L, Mpourmpakis G, Karim AM. Solvent manipulation of the pre-reduction metal-ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles. NANOSCALE 2021; 13:206-217. [PMID: 33325939 DOI: 10.1039/d0nr06078j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding how to control the nucleation and growth rates is crucial for designing nanoparticles with specific sizes and shapes. In this study, we show that the nucleation and growth rates are correlated with the thermodynamics of metal-ligand/solvent binding for the pre-reduction complex and the surface of the nanoparticle, respectively. To obtain these correlations, we measured the nucleation and growth rates by in situ small angle X-ray scattering during the synthesis of colloidal Pd nanoparticles in the presence of trioctylphosphine in solvents of varying coordinating ability. The results show that the nucleation rate decreased, while the growth rate increased in the following order, toluene, piperidine, 3,4-lutidine and pyridine, leading to a large increase in the final nanoparticle size (from 1.4 nm in toluene to 5.0 nm in pyridine). Using density functional theory (DFT), complemented by 31P nuclear magnetic resonance and X-ray absorption spectroscopy, we calculated the reduction Gibbs free energies of the solvent-dependent dominant pre-reduction complex and the solvent-nanoparticle binding energy. The results indicate that lower nucleation rates originate from solvent coordination which stabilizes the pre-reduction complex and increases its reduction free energy. At the same time, DFT calculations suggest that the solvent coordination affects the effective capping of the surface where stronger binding solvents slow the nanoparticle growth by lowering the number of active sites (not already bound by trioctylphosphine). The findings represent a promising advancement towards understanding the microscopic connection between the metal-ligand thermodynamic interactions and the kinetics of nucleation and growth to control the size of colloidal metal nanoparticles.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma Y, Kuhn AN, Gao W, Al-Zoubi T, Du H, Pan X, Yang H. Strong electrostatic adsorption approach to the synthesis of sub-three nanometer intermetallic platinum–cobalt oxygen reduction catalysts. NANO ENERGY 2021; 79:105465. [DOI: 10.1016/j.nanoen.2020.105465] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Xie M, Lyu Z, Chen R, Xia Y. A Mechanistic Study of the Multiple Roles of Oleic Acid in the Oil-Phase Synthesis of Pt Nanocrystals. Chemistry 2020; 26:15636-15642. [PMID: 32820552 DOI: 10.1002/chem.202003202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022]
Abstract
Oleic acid (OAc) is commonly used as a surfactant and/or solvent for the oil-phase synthesis of metal nanocrystals but its explicit roles are yet to be resolved. Here, we report a systematic study of this problem by focusing on a synthesis that simply involves heating of Pt(acac)2 in OAc for the generation of Pt nanocrystals. When heated at 80 °C, the ligand exchange between Pt(acac)2 and OAc leads to the formation of a PtII -oleate complex that serves as the actual precursor to Pt atoms. Upon increasing the temperature to 120 °C, the decarbonylation of OAc produces CO, which can act as a reducing agent for the generation of Pt atoms and thus formation of nuclei. Afterwards, several catalytic reactions can take place on the surface of the Pt nuclei to produce more CO, which also serves as a capping agent for the formation of Pt nanocrystals enclosed by {100} facets. The emergence of Pt nanocrystals further promotes the autocatalytic surface reduction of PtII precursor to enable the continuation of growth. This work not only elucidates the critical roles of OAc at different stages in a synthesis of Pt nanocrystals, but also represents a pivotal step forward toward the rational synthesis of metal nanocrystals.
Collapse
Affiliation(s)
- Minghao Xie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| |
Collapse
|
18
|
Quinson J, Jensen KM. From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Adv Colloid Interface Sci 2020; 286:102300. [PMID: 33166723 DOI: 10.1016/j.cis.2020.102300] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022]
Abstract
Platinum (Pt) is one of the most studied materials in catalysis today and considered for a wide range of applications: chemical synthesis, energy conversion, air treatment, water purification, sensing, medicine etc. As a limited and non-renewable resource, optimized used of Pt is key. Nanomaterial design offers multiple opportunities to make the most of Pt resources down to the atomic scale. In particular, colloidal syntheses of Pt nanoparticles are well documented and simple to implement, which accounts for the large interest in research and development. For further breakthroughs in the design of Pt nanomaterials, a deeper understanding of the intricate synthesis-structures-properties relations of Pt nanoparticles must be obtained. Understanding how Pt nanoparticles form from molecular precursors is both a challenging and rewarding area of investigation. It is directly relevant to develop improved Pt nanomaterials but is also a source of inspiration to design other precious metal nanostructures. Here, we review the current understanding of Pt nanoparticle formation. This review is aimed at readers with interest in Pt nanoparticles in general and their colloidal syntheses in particular. Readers with a strongest interest on the study of nanomaterial formation will find here the case study of Pt. The preferred model systems and characterization techniques used to perform the study of Pt nanoparticle syntheses are discussed. In light of recent achievements, further direction and areas of research are proposed.
Collapse
|
19
|
Wang Y, Counihan MJ, Lin JW, Rodríguez-López J, Yang H, Lu Y. Quantitative Analysis of DNA-Mediated Formation of Metal Nanocrystals. J Am Chem Soc 2020; 142:10.1021/jacs.0c08604. [PMID: 33207870 PMCID: PMC9203591 DOI: 10.1021/jacs.0c08604] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The predictive synthesis of metal nanocrystals with desired structures relies on the precise control of the crystal formation process. Using a capping ligand is an effective method to affect the reduction of metal ions and the formation of nanocrystals. However, predictively synthesizing nanostructures has been difficult to achieve using conventional capping ligands. DNA, as a class of the promising biomolecular capping ligands, has been used to generate sequence-specific morphologies in various metal nanocrystals. However, mechanistic insight into the DNA-mediated nanocrystal formation remains elusive due to the lack of quantitative experimental evidence. Herein, we quantitatively analyzed the precise control of DNA over Ag+ reduction and the structures of resulting Au-Ag core-shell nanocrystals. We derived the equilibrium binding constants between DNA and Ag+, the kinetic rate constants of sequence-specific Ag+ reduction pathways, and the percentage of active surface sites remaining on the nanocrystals after DNA passivation. These three synergistic factors influence the nucleation and growth process both thermodynamically and kinetically, which contributed to the morphological evolution of Au-Ag nanocrystals synthesized with different DNA sequences. This study demonstrates the potential of using functional DNA sequences as a versatile and tunable capping ligand system for the predictable synthesis of metal nanostructures.
Collapse
|
20
|
Nakamoto T, Motomiya KI, Yokoyama S, Takahashi H. Precursor-templated synthesis of thermodynamically unfavored platinum nanoplates for the oxygen reduction reaction. Dalton Trans 2020; 49:15837-15842. [PMID: 33155605 DOI: 10.1039/d0dt03338c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Controlling the shape of Pt-based nanomaterials is a major strategy to enhance the electrocatalytic performance towards the oxygen reduction reaction (ORR). Since the Pt (111) facet exhibits desirable electrochemical properties, Pt nanoplates enclosed by {111} facets are promising candidates. However, plate-shaped Pt crystals have thermodynamically unfavored structures, making syntheses challenging. Here we report a novel precursor-templated route to synthesize Pt nanoplates. Specifically, precipitated (NH4)2PtCl6 prepared in aqueous solution is used as the Pt precursor followed by the addition of NaBH4 as a reducing agent. With domain matching epitaxy, Pt nanoplates grow on the surface of the precipitated precursor, selectively exposing the {111} facets. Compared to those of commercial Pt/C at 0.90 and 0.85 V, the ORR properties of Pt nanoplates display a 1.5- and 5.2-fold enhancement in the mass activity, and a 3.3- and 11.6-fold enhancement in the specific activity, respectively. The superior ORR activities and the unique shape of Pt nanoplates are maintained for at least 5000 potential cycles.
Collapse
Affiliation(s)
- Tatsuichiro Nakamoto
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Ken-Ichi Motomiya
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Shun Yokoyama
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| | - Hideyuki Takahashi
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
21
|
Shi Y, Lyu Z, Zhao M, Chen R, Nguyen QN, Xia Y. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications. Chem Rev 2020; 121:649-735. [DOI: 10.1021/acs.chemrev.0c00454] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhiheng Lyu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ming Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ruhui Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Quynh N. Nguyen
- Department of Chemistry, Agnes Scott College, Decatur, Georgia 30030, United States
| | - Younan Xia
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| |
Collapse
|
22
|
Campisi S, Beevers C, Nasrallah A, Catlow CRA, Chan-Thaw CE, Manzoli M, Dimitratos N, Willock DJ, Roldan A, Villa A. DFT-Assisted Spectroscopic Studies on the Coordination of Small Ligands to Palladium: From Isolated Ions to Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:4781-4790. [PMID: 33828633 PMCID: PMC8016172 DOI: 10.1021/acs.jpcc.9b09791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/28/2019] [Indexed: 06/12/2023]
Abstract
A combination of experimental spectroscopies (UV-vis and Fourier-transform infrared) and computational modeling was used to investigate the coordination of small ligands (aminopropanol and propanediol) to Pd species during the metal nanoparticle formation process. Differences emerged between O- (propanediol) and N-containing (aminopropanol) ligands. In particular, a strong interaction between the NH amino group and Pd2+ ions could be inferred on the basis of spectroscopic evidences, which was corroborated by theoretical simulations, which confirmed the preferential coordination of aminopropanol through the NH group. This interaction seems to potentially cause the aminopropanol ligand to control the particle shape through a selective blocking of Pd(100) facets, which promote the growth on the Pd(111) facets.
Collapse
Affiliation(s)
- Sebastiano Campisi
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Cameron Beevers
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K.
| | - Ali Nasrallah
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K.
| | - C. Richard A. Catlow
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K.
| | - Carine e. Chan-Thaw
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, I-20133 Milano, Italy
| | - Maela Manzoli
- Department
of Drug Science and Technology and NIS—Centre for Nanostructured
Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Nikolaos Dimitratos
- Dipartimento
di Chimica Industriale e dei Materiali, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - David J. Willock
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K.
| | - Alberto Roldan
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, U.K.
| | - Alberto Villa
- Dipartimento
di Chimica, Università degli Studi
di Milano, Via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
23
|
Mahmoud ME, Allam EA, El-Sharkawy RM, Soliman MA, Saad EA, El-Khatib AM. Nano-manganese oxide-functionalized-oleyl amine as a simple and low cost nanosorbent for remediation of Zn II/Co II and their radioactive nuclides 65Zn and 60Co from water. Appl Radiat Isot 2020; 159:108989. [PMID: 32250753 DOI: 10.1016/j.apradiso.2019.108989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/08/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022]
Abstract
The contribution of oleyl amine as a biodegradable and simple aliphatic compound containing amine functional group (-NH2) was discussed in this work with respect to the remediation process of heavy metal ions from aqueous solution. Manganese oxide nanoparticles were synthesized via combustion synthesis and then functionalized with oleyl amine to form a new nanosorbent (NMn3O4-OA).The characteristics of this nanosorbent were examined using different instruments, such as Fourier-transform infrared spectroscopy, thermal gravimetric analysis, X-ray powder diffraction and high-resolution transmission electron microscopy. The HR-TEM images confirmed nanoscale range for NMn3O4-OA between 41.30 and 61.86 nm. The influence of diverse parameters on remediation of ZnII/CoII was examined, involving pH of metal ion solutions (pH 1-7), reaction time (1-60 min), solid amount (5-100 mg) and ionic concentration (0.1-2.0 mol/L). The optimum conditions were found pH 7 and 5-20 min reaction time for the two metal ions. The maximum capacities for adsorptive remediation were found 202 and 100 mgg-1for ZnII and Co II, respectively.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Alexandria University, Faculty of Science, Chemistry Department, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt
| | - Elhassan A Allam
- Alexandria University, Faculty of Science, Chemistry Department, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt; Health Affairs Directorate, Central Labs of Alexandria, P.O. Box 21518, Alexandria, Egypt.
| | - Rehab M El-Sharkawy
- Chemistry Department, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| | - Mohamed A Soliman
- Egypt Second Research Reactor, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Ebitasem A Saad
- Ain Shams University, Faculty of Science, Chemistry Department, P.O. Box1156, Cairo, Egypt
| | - Ahmed M El-Khatib
- Alexandria University, Faculty of Science, Physics Department, P.O. Box 426, Ibrahimia, 21321, Alexandria, Egypt
| |
Collapse
|
24
|
Thangaraju D, Marnadu R, Santhana V, Durairajan A, Kathirvel P, Chandrasekaran J, Jayakumar S, Valente MA, Greenidge DC. Solvent influenced synthesis of single-phase SnS2 nanosheets for solution-processed photodiode fabrication. CrystEngComm 2020. [DOI: 10.1039/c9ce01417a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of variant high boiling point solvent combinations in the synthesis and photo-sensing characteristics of tin disulfide (SnS2) thin nanosheets were investigated.
Collapse
Affiliation(s)
- D. Thangaraju
- nano-crystal Design and Application Lab (n-DAL)
- Department of Physics
- PSG Institute of Technology and Applied Research
- Coimbatore-641062
- India
| | - R. Marnadu
- Department of Physics
- Sri Ramakrishna Mission Vidyalaya College of Arts and Science
- Coimbatore 641 020
- India
| | - V. Santhana
- nano-crystal Design and Application Lab (n-DAL)
- Department of Physics
- PSG Institute of Technology and Applied Research
- Coimbatore-641062
- India
| | - A. Durairajan
- I3NAveiro
- Department of Physics
- University of Aveiro
- 3810 193 Aveiro
- Portugal
| | - P. Kathirvel
- Department of Physics
- PSG College of Technology
- Coimbatore-641004
- India
| | - J. Chandrasekaran
- Department of Physics
- Sri Ramakrishna Mission Vidyalaya College of Arts and Science
- Coimbatore 641 020
- India
| | - S. Jayakumar
- nano-crystal Design and Application Lab (n-DAL)
- Department of Physics
- PSG Institute of Technology and Applied Research
- Coimbatore-641062
- India
| | - M. A. Valente
- I3NAveiro
- Department of Physics
- University of Aveiro
- 3810 193 Aveiro
- Portugal
| | - Darius C. Greenidge
- Shizuoka University
- Office of the Special Advisor to the President
- International Affairs (Geologist/Mineralogist)
- Shizuoka
- Japan
| |
Collapse
|
25
|
Zhang S, Rong H, Yang T, Bai B, Zhang J. Ultrafine PtRu Dilute Alloy Nanodendrites for Enhanced Electrocatalytic Methanol Oxidation. Chemistry 2019; 26:4025-4031. [DOI: 10.1002/chem.201904229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shuping Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Tianyi Yang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Bing Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional, Materials and Green ApplicationsSchool of Materials Science & EngineeringBeijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
26
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
27
|
Robertson AW, Lee GD, Lee S, Buntin P, Drexler M, Abdelhafiz AA, Yoon E, Warner JH, Alamgir FM. Atomic Structure and Dynamics of Epitaxial Platinum Bilayers on Graphene. ACS NANO 2019; 13:12162-12170. [PMID: 31553564 DOI: 10.1021/acsnano.9b06701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Platinum atomic layers grown on graphene were investigated by atomic resolution transmission electron microscopy (TEM). These TEM images reveal the epitaxial relationship between the atomically thin platinum layers and graphene, with two optimal epitaxies observed. The energetics of these epitaxies influences the grain structure of the platinum film, facilitating grain growth via in-plane rotation and assimilation of neighbor grains, rather than grain coarsening from the movement of grain boundaries. This growth process was enabled due to the availability of several possible low-energy intermediate states for the rotating grains, the Pt-Gr epitaxies, which are minima in surface energy, and coincident site lattice grain boundaries, which are minima in grain boundary energy. Density functional theory calculations reveal a complex interplay of considerations for minimizing the platinum grain energy, with free platinum edges also having an effect on the relative energetics. We thus find that the platinum atomic layer grains undergo significant reorientation to minimize interface energy (via epitaxy), grain boundary energy (via low-energy orientations), and free edge energy. These results will be important for the design of two-dimensional graphene-supported platinum catalysts and obtaining large-area uniform platinum atomic layer films and also provide fundamental experimental insight into the growth of heteroepitaxial thin films.
Collapse
Affiliation(s)
- Alex W Robertson
- Department of Materials , University of Oxford , Parks Road , Oxford , OX1 3PH , United Kingdom
| | - Gun-Do Lee
- Department of Materials Science and Engineering , Seoul National University , Gwanak-gu , Seoul 08826 , South Korea
- Research Institute of Advanced Materials , Seoul National University , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Sungwoo Lee
- Department of Materials Science and Engineering , Seoul National University , Gwanak-gu , Seoul 08826 , South Korea
- Research Institute of Advanced Materials , Seoul National University , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Parker Buntin
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Matthew Drexler
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ali A Abdelhafiz
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Euijoon Yoon
- Department of Materials Science and Engineering , Seoul National University , Gwanak-gu , Seoul 08826 , South Korea
- Research Institute of Advanced Materials , Seoul National University , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Jamie H Warner
- Department of Materials , University of Oxford , Parks Road , Oxford , OX1 3PH , United Kingdom
| | - Faisal M Alamgir
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
28
|
Mozaffari S, Li W, Dixit M, Seifert S, Lee B, Kovarik L, Mpourmpakis G, Karim AM. The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. NANOSCALE ADVANCES 2019; 1:4052-4066. [PMID: 36132098 PMCID: PMC9417622 DOI: 10.1039/c9na00348g] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/05/2019] [Indexed: 05/10/2023]
Abstract
Controlling the size distribution of nanoparticles is important for many applications and typically involves the use of ligands during synthesis. In this study, we show that the mechanism of size focusing involves a dependence of the growth rate on the size of the nanoparticles and the ligand coverage on the surface of the nanoparticles. To demonstrate these effects, we used in situ small angle X-ray scattering (SAXS) and population balance kinetic modeling (PBM) to investigate the evolution of size distribution during the synthesis of colloidal Pd metal nanoparticles. Despite temporal overlap of nucleation and growth, our in situ SAXS show size focusing of the distribution under different synthetic conditions (different concentrations of metal and ligand as well as solvent type). To understand the mechanism of size focusing using PBM, we systematically studied how the evolution of the nanoparticle size distribution is affected by nucleation rate, and dependence of the growth rate constant on ligand surface coverage, and size of the nanoparticles. We show that continuous nucleation contributes to size defocusing. However, continuous nucleation results in different reaction times for the nanoparticle population leading to time and size-dependent ligand surface coverage. Using density functional theory (DFT) calculations and Brønsted-Evans-Polanyi relations, we show that as the population grows, larger nanoparticles grow more slowly than smaller ones due to lower intrinsic activity and higher ligand coverage on the surface. Therefore, despite continuous nucleation, the faster growth of smaller nanoparticles in the population leads to size focusing. The size focusing behaviour (due to faster growth of smaller nanoparticles) was found to be model independent and similar results were demonstrated under different nucleation and growth pathways (e.g. growth via ion reduction on the surface and/or monomer addition). Our results provide a microscopic connection between kinetics and thermodynamics of nanoparticle growth and metal-ligand binding, and their effect on the size distribution of colloidal nanoparticles.
Collapse
Affiliation(s)
- Saeed Mozaffari
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University Blacksburg VA 24060 USA
| | - Wenhui Li
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University Blacksburg VA 24060 USA
| | - Mudit Dixit
- Department of Chemical Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Soenke Seifert
- Advanced Photon Source, Argonne National Laboratory Argonne IL 60439 USA
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory Argonne IL 60439 USA
| | - Libor Kovarik
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Giannis Mpourmpakis
- Department of Chemical Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University Blacksburg VA 24060 USA
| |
Collapse
|
29
|
Qin F, Ma Y, Miao L, Wang Z, Gan L. Influence of Metal-Ligand Coordination on the Elemental Growth and Alloying Composition of Pt-Ni Octahedral Nanoparticles for Oxygen Reduction Electrocatalysis. ACS OMEGA 2019; 4:8305-8311. [PMID: 31459917 PMCID: PMC6648910 DOI: 10.1021/acsomega.8b03366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/21/2019] [Indexed: 05/29/2023]
Abstract
Understanding the role of surfactants or ligands on the growth mechanism of metal/alloy nanoparticles (NPs) is important for controlled synthesis of functional metallic NPs with tailored structures and properties. There have been a number of works showing the significant impact of surfactants/ligands on the shape-controlled synthesis of nanocrystals with well-defined surfaces. Beyond the morphological shape control, impact of the surfactants/ligands on the alloying structure of bimetallic nanocrystals, however, still remains largely unaddressed. We reveal here a significant effect of benzoic acid ligand on the elemental growth and alloying phase structure of octahedral Pt-Ni NPs, a class of highly active electrocatalyst for oxygen reduction reaction in fuel cells. Contrary to previous reports showing the critical role of benzoic acid in directing the growth of octahedral Pt-Ni NPs, we found that benzoic acid played a minor role in forming the octahedral shape; instead, it can strongly coordinate with Ni cation and significantly slows down its reduction rate, leading to a phase separation in the Pt-Ni NP products (a mixture of Pt-rich octahedral NPs and nearly pure Ni NPs). Such phase separation further resulted in a lower catalytic activity and stability. These results help us comprehensively understand the effect of metal-ligand coordination chemistry on the elemental growth mechanism and alloying phase structure of bimetallic NPs, complementing previous emphasis on the role of surfactants in purely morphological shape control.
Collapse
Affiliation(s)
| | | | | | | | - Lin Gan
- E-mail: . Phone/Fax: +86-(0)755-26036022
| |
Collapse
|
30
|
Li Y, Hou F, Sun X, Xiao Z, Zhang X, Li G. Toward an Understanding of Capping Molecules on Pt Nanoparticles for Hydrogenation: the Key Role of Hydroxyl Groups. ChemistrySelect 2019. [DOI: 10.1002/slct.201900100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yueting Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Fang Hou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Xiaoqing Sun
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Zhourong Xiao
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin University Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
31
|
Lee C, Wang H, Zhao M, Yang T, Vara M, Xia Y. One‐Pot Synthesis of Pd@Pt
n
L
Core‐Shell Icosahedral Nanocrystals in High Throughput through a Quantitative Analysis of the Reduction Kinetics. Chemistry 2019; 25:5322-5329. [DOI: 10.1002/chem.201900229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Chi‐Ta Lee
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Helan Wang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| | - Ming Zhao
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| | - Madeline Vara
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Younan Xia
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
32
|
Clark BD, DeSantis CJ, Wu G, Renard D, McClain MJ, Bursi L, Tsai AL, Nordlander P, Halas NJ. Ligand-Dependent Colloidal Stability Controls the Growth of Aluminum Nanocrystals. J Am Chem Soc 2019; 141:1716-1724. [PMID: 30612425 DOI: 10.1021/jacs.8b12255] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH3 in Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti3+-AlH3 complexes. Proton nuclear magnetic resonance spectroscopy indicates isopropoxy ligands are removed from Ti by Al, producing aluminum(III) isopropoxide and low-valent Ti3+ catalysts. These Ti3+ species catalyze elimination of H2 from AlH3 inducing the polymerization of AlH3 into colloidally unstable low-valent aluminum hydride clusters. These clusters coalesce and grow while expelling H2 to form colloidally stable Al nanocrystals. The colloidal stability of the Al nanocrystals and their size is determined by the molecular structure and density of coordinating atoms in the reaction, which is controlled by choice of solvent composition.
Collapse
Affiliation(s)
| | | | - Gang Wu
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin Street , Houston , Texas 77030 , United States
| | | | | | | | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine , The University of Texas McGovern Medical School , 6431 Fannin Street , Houston , Texas 77030 , United States
| | | | | |
Collapse
|
33
|
Dual Size-Dependent Effect of Fe₃O₄ Magnetic Nanoparticles Upon Interaction with Lysozyme Amyloid Fibrils: Disintegration and Adsorption. NANOMATERIALS 2018; 9:nano9010037. [PMID: 30597897 PMCID: PMC6359433 DOI: 10.3390/nano9010037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
Nanomedicine compounds containing nanoparticles, such as iron oxides and gold, have been demonstrated to be effective in promoting different magnitudes of interaction with amyloid β fibrils, of which disintegrating or inhibiting effects are of great importance to treating fibrillary aggregation-induced neurological disorders such as Alzheimer’s disease. This research herein studies the interaction between lysozyme amyloid fibrils, a type of fibers derived from hen egg white lysozyme, and Fe3O4 magnetic nanoparticles (MNPs) of an assorted diameter sizes of 5 nm, 10 nm and 20 nm, using atomic force microscopy (AFM). Specifically, the effects of the sizes of negatively charged MNPs on the resultant amyloid fibrillary mixture was investigated. Our results of AFM images indicated that the interaction between MNPs and the fibrils commences immediately after adding MNPs to the fibril solution, and the actions of such MNPs-doped fibrillary interplay, either integration or segmentation, is strongly dependent on the size and volume concentration of MNPs. In the cases of 5 nm and 20 nm particles of equivalent volume concentration, the adsorption and agglomeration of MNPs onto the fibrillary surfaces was observed, whereas, interestingly, MNPs with diameter size of 10 nm enables segmentation of the slender fibrils into debris when a proper implemented volume concentration was found, which signifies utter destruction of the amyloid fibrillary structure.
Collapse
|
34
|
Vakil PN, Hardy DA, Strouse GF. Synthesis of Highly Uniform Nickel Multipods with Tunable Aspect Ratio by Microwave Power Control. ACS NANO 2018; 12:6784-6793. [PMID: 29912545 DOI: 10.1021/acsnano.8b01992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As the importance of anisotropic nanostructures and the role of surfaces continues to rise in applications including catalysis, magneto-optics, and electromagnetic interference shielding, there is a need for efficient and economical synthesis routes for such nanostructures. The article describes the application of cycled microwave power for the rapid synthesis of highly branched pure-phase face-centered cubic crystalline nickel multipod nanostructures with >99% multipod population. By controlling the power delivery to the reaction mixture through cycling, superior control is achieved over the growth kinetics of the metallic nanostructures, allowing formation of multipods consisting of arms with different aspect ratios. The multipod structures are formed under ambient conditions in a simple reaction system composed of nickel acetylacetonate (Ni(acac)2), oleylamine (OAm), and oleic acid (OAc) in a matter of minutes by selective heating at the (111) overgrowth corners on Ni nanoseeds. The selective heating at the corners leads to accelerated autocatalytic growth along the ⟨111⟩ direction through a "lightning rod" effect. The length is proprtional to the length and number of microwave (MW)-on cycles, whereas the core size is controlled by continuous MW power delivery. The roles of heating mode (cycling versus variable power versus convective heating) during synthesis of the materials is explored, allowing a mechanism into how cycled microwave energy may allow fast multipod evolution to be proposed.
Collapse
Affiliation(s)
- Parth N Vakil
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - David A Hardy
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306-4390 , United States
| |
Collapse
|
35
|
Mozaffari S, Li W, Thompson C, Ivanov S, Seifert S, Lee B, Kovarik L, Karim AM. Ligand-Mediated Nucleation and Growth of Palladium Metal Nanoparticles. J Vis Exp 2018. [PMID: 29985367 DOI: 10.3791/57667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The size, size distribution and stability of colloidal nanoparticles are greatly affected by the presence of capping ligands. Despite the key contribution of capping ligands during the synthesis reaction, their role in regulating the nucleation and growth rates of colloidal nanoparticles is not well understood. In this work, we demonstrate a mechanistic investigation of the role of trioctylphosphine (TOP) in Pd nanoparticles in different solvents (toluene and pyridine) using in situ SAXS and ligand-based kinetic modeling. Our results under different synthetic conditions reveal the overlap of nucleation and growth of Pd nanoparticles during the reaction, which contradicts the LaMer-type nucleation and growth model. The model accounts for the kinetics of Pd-TOP binding for both, the precursor and the particle surface, which is essential to capture the size evolution as well as the concentration of particles in situ. In addition, we illustrate the predictive power of our ligand-based model through designing the synthetic conditions to obtain nanoparticles with desired sizes. The proposed methodology can be applied to other synthesis systems and therefore serves as an effective strategy for predictive synthesis of colloidal nanoparticles.
Collapse
Affiliation(s)
- Saeed Mozaffari
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University
| | - Wenhui Li
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University
| | - Sergei Ivanov
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory
| | | | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory
| | - Libor Kovarik
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University;
| |
Collapse
|
36
|
Santana JS, Koczkur KM, Skrabalak SE. Kinetically controlled synthesis of bimetallic nanostructures by flowrate manipulation in a continuous flow droplet reactor. REACT CHEM ENG 2018. [DOI: 10.1039/c8re00077h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We show that different Au–Pd nanoparticles, ranging from sharp-branched octopods to core@shell octahedra, can be achieved by inline manipulation of reagent flowrates in a microreactor for seeded growth.
Collapse
Affiliation(s)
- Joshua S. Santana
- Department of Chemistry
- Indiana University – Bloomington
- Bloomington
- USA
| | - Kallum M. Koczkur
- Department of Chemistry
- Indiana University – Bloomington
- Bloomington
- USA
| | - Sara E. Skrabalak
- Department of Chemistry
- Indiana University – Bloomington
- Bloomington
- USA
| |
Collapse
|
37
|
Autocatalytic surface reduction and its role in controlling seed-mediated growth of colloidal metal nanocrystals. Proc Natl Acad Sci U S A 2017; 114:13619-13624. [PMID: 29229860 DOI: 10.1073/pnas.1713907114] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The growth of colloidal metal nanocrystals typically involves an autocatalytic process, in which the salt precursor adsorbs onto the surface of a growing nanocrystal, followed by chemical reduction to atoms for their incorporation into the nanocrystal. Despite its universal role in the synthesis of colloidal nanocrystals, it is still poorly understood and controlled in terms of kinetics. Through the use of well-defined nanocrystals as seeds, including those with different types of facets, sizes, and internal twin structure, here we quantitatively analyze the kinetics of autocatalytic surface reduction in an effort to control the evolution of nanocrystals into predictable shapes. Our kinetic measurements demonstrate that the activation energy barrier to autocatalytic surface reduction is highly dependent on both the type of facet and the presence of twin boundary, corresponding to distinctive growth patterns and products. Interestingly, the autocatalytic process is effective not only in eliminating homogeneous nucleation but also in activating and sustaining the growth of octahedral nanocrystals. This work represents a major step forward toward achieving a quantitative understanding and control of the autocatalytic process involved in the synthesis of colloidal metal nanocrystals.
Collapse
|