1
|
Lee S, Lee G, Oh M. MOF-on-MOF Growth: Inducing Naturally Nonpreferred MOFs and Atypical MOF Growth. Acc Chem Res 2024. [PMID: 39388366 DOI: 10.1021/acs.accounts.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
ConspectusOverflowing metal-organic frameworks (MOFs) have been synthesized from a wide range of metal and organic components for specific purposes and intellectual curiosity. Each MOF has unique chemical and structural characteristics directed by the incorporated components, metal ions (or clusters), organic linkers, and their intrinsic coordination interactions. These incorporated components and structural characteristics are two pivotal factors influencing MOFs' fundamental properties and subsequent applications. Therefore, selecting the appropriate metal and organic components, considering their innate chemical and structural properties, is crucial to endow the final MOFs with the desired properties. Ultimately, producing MOFs with a desired structure using ideal components is the best approach to achieving the best MOFs tailored for specific purposes with desired properties. However, achieving MOFs with the intended structure from chosen components remains underdeveloped. In many cases, the resulting MOF structure is governed by the thermodynamically and/or kinetically preferred configuration (refers to a naturally preferred structure) of the chosen components and given reaction conditions. Additionally, producing hybrid MOFs with complex components, structures, and morphologies presents a great opportunity to obtain special MOFs with advanced properties and functions. In this Account, we outline our group's efforts over the past few years to develop naturally nonpreferred MOFs through the induced MOF-on-MOF growth process and atypical hybrid MOFs via nonstandard MOF-on-MOF growth. First, we highlight the prime strategy for producing naturally nonpreferred MOFs based on template-induced MOF-on-MOF growth. In this section, we discuss the two basic growth behaviors, isotropic and anisotropic growth of naturally nonpreferred MOFs, determined by the degree of matching between the cell lattices of the two MOFs. Second, we introduce the MOF farming concept for the productive cultivation and effective harvesting of naturally nonpreferred MOFs made by MOF-on-MOF growth. Here we discuss the importance of selecting the ideal MOF template for productive growth and developing an efficient method for harvesting cultivated MOFs. Next, we describe atypical anisotropic MOF-on-MOF growths between two MOFs with mismatched cell lattices. In this section, we introduce tip-to-middle MOF-on-MOF growth involving self-structural adjustment of the secondary MOF, logical inference of unidentified MOF structures based on MOF-on-MOF growth behavior and morphological features, and MOF-on-MOF growth accompanied by etching and transformation of the template. Finally, we discuss the perspectives and challenges of MOF-on-MOF growth and the synthesis of naturally nonpreferred MOFs. We hope that this Account offers valuable insights into the rational design and development of MOFs with desired structural and compositional characteristics, leading to the creation of ideal MOFs.
Collapse
Affiliation(s)
- Sujeong Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gihyun Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moonhyun Oh
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Feng L, Zhang Q, Su J, Ma B, Wan Y, Zhong R, Zou R. Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO 2/N 2 Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:24. [PMID: 38202479 PMCID: PMC10780323 DOI: 10.3390/nano14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
MOF-74 (metal-organic framework) is utilized as a filler in mixed-matrix membranes (MMMs) to improve gas selectivity due to its unique one-dimensional hexagonal channels and high-density open metal sites (OMSs), which exhibit a strong affinity for CO2 molecules. Reducing the agglomeration of nanoparticles and improving the compatibility with the matrix can effectively avoid the existence of non-selective voids to improve the gas separation efficiency. We propose a novel, layer-by-layer modification strategy for MOF-74 with graphene oxide. Two-dimensional graphene oxide nanosheets as a supporting skeleton creatively improve the dispersion uniformity of MOFs in MMMs, enhance their interfacial compatibility, and thus optimize the selective gas permeability. Additionally, they extended the gas diffusion paths, thereby augmenting the dissolution selectivity. Compared with doping with a single component, the use of a GO skeleton to disperse MOF-74 into Pebax®1657 (Polyether Block Amide) achieved a significant improvement in terms of the gas separation effect. The CO2/N2 selectivity of Pebax®1657-MOF-74 (Ni)@GO membrane with a filler concentration of 10 wt% was 76.96, 197.2% higher than the pristine commercial membrane Pebax®1657. Our results highlight an effective way to improve the selective gas separation performance of MMMs by functionalizing the MOF supported by layered GO. As an efficient strategy for developing porous MOF-based gas separation membranes, this method holds particular promise for manufacturing advanced carbon dioxide separation membranes and also concentrates on improving CO2 capture with new membrane technologies, a key step in reducing greenhouse gas emissions through carbon capture and storage.
Collapse
Affiliation(s)
- Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Qiuning Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Jianwen Su
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Bing Ma
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, No. 18 Fuxue Road, Changping District, Beijing 102249, China (J.S.)
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
3
|
Kundu S, Haldar R. A roadmap to enhance gas permselectivity in metal-organic framework-based mixed-matrix membranes. Dalton Trans 2023; 52:15253-15276. [PMID: 37603374 DOI: 10.1039/d3dt01878d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Performing gas separation at high efficiency with minimum energy input and reduced carbon footprint is a major challenge. While several separation methods exist at various technology readiness levels, porous membrane-based separation is considered as a disruptive technology. To attain sustainability and required efficiency, different approaches of membrane design have been explored. However, the selectivity-permeation trade-off and membrane aging have restricted further advancement. In this regard, a new generation composite made of organic polymers and metal-organic framework (MOF) fillers shows substantial promise. Organic polymer matrix allows easy processibility, but it has poor permselectivity for gas molecules. Metal-organic frameworks are excellent sieving materials; however, they suffer from poor processibility issues. A combination of these two components makes an ideal sieving membrane, which can potentially outnumber the existing energy intensive distillation strategies. In this perspective, we have discussed key indices that regulate gas permselectivity by a careful selection of the existing literature. While the target gas flux and selectivity values have been a part of many previous reviews and articles, we have presented a concise discussion on the interface design of the MOF-polymer membrane, morphology, and orientation control of MOF fillers in the matrix. Following this, a future roadmap to overcome challenges related to MOF-polymer interfacial defects is outlined.
Collapse
Affiliation(s)
- Susmita Kundu
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| | - Ritesh Haldar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India.
| |
Collapse
|
4
|
He Q, Bai J, Wang H, Liu S, Jun SC, Yamauchi Y, Chen L. Emerging Pristine MOF-Based Heterostructured Nanoarchitectures: Advances in Structure Evolution, Controlled Synthesis, and Future Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303884. [PMID: 37625077 DOI: 10.1002/smll.202303884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.
Collapse
Affiliation(s)
- Qingqing He
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, 120-749, Seoul, South Korea
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemical and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
5
|
Wan Y, Kong D, Xiong F, Qiu T, Gao S, Zhang Q, Miao Y, Qin M, Wu S, Wang Y, Zhong R, Zou R. Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Li H, Zhuang S, Zhao B, Yu Y, Liu Y. Visualization of the gas permeation in core–shell MOF/Polyimide mixed matrix membranes and structural optimization based on finite element equivalent simulation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Boone P, He Y, Lieber AR, Steckel JA, Rosi NL, Hornbostel KM, Wilmer CE. Designing optimal core-shell MOFs for direct air capture. NANOSCALE 2022; 14:16085-16096. [PMID: 36082903 DOI: 10.1039/d2nr03177a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), along with other novel adsorbents, are frequently proposed as candidate materials to selectively adsorb CO2 for carbon capture processes. However, adsorbents designed to strongly bind CO2 nearly always bind H2O strongly (sometimes even more so). Given that water is present in significant quantities in the inlet streams of most carbon capture processes, a method that avoids H2O competition for the CO2 binding sites would be technologically valuable. In this paper, we consider a novel core-shell MOF design strategy, where a high-CO2-capacity MOF "core" is protected from competitive H2O-binding via a MOF "shell" that has very slow water diffusion. We consider a high-frequency adsorption/desorption cycle that regenerates the adsorbents before water can pass through the shell and enter the core. To identify optimal core-shell MOF pairs, we use a combination of experimental measurements, computational modeling, and multiphysics modeling. Our library of MOFs is created from two starting MOFs-UiO-66 and UiO-67-augmented with 30 possible functional group variations, yielding 1740 possible core-shell MOF pairs. After defining a performance score to rank these pairs, we identified 10 core-shell MOF candidates that significantly outperform any of the MOFs functioning alone.
Collapse
Affiliation(s)
- Paul Boone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
| | - Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Austin R Lieber
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Janice A Steckel
- United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15236, USA
| | - Nathaniel L Rosi
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Katherine M Hornbostel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
8
|
Synthesis, characterization, and gas adsorption performance of an efficient hierarchical ZIF-11@ZIF-8 core-shell metal-organic framework (MOF). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Xu Y, Zhao X, Chang R, Qu H, Xu J, Ma J. Designing heterogeneous MOF-on-MOF membrane with hierarchical pores for effective water treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Magnetically recyclable nanocomposites via lanthanide-based MOFs grown on natural sea sponge: Screening hydrogenation of nitrophenol to aminophenol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Lu YR, Yu YY, Chen JK, Guo P, Yang YP, Liu CF, Zhang JH, Wang BJ, Xie SM, Yuan LM. Superficial chiral etching on achiral metal-organic framework for HPLC enantioseparations. J Sep Sci 2022; 45:3510-3519. [PMID: 35880615 DOI: 10.1002/jssc.202200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/06/2022]
Abstract
Chiral metal-organic frameworks have shown great potential in enantioselective separation and asymmetric catalysis due to their diverse and adjustable structures with abundant chiral recognition sites. Herein, a new chiral postsynthetic modification was used for preparing an achiral@chiral metal-organic frameworks core-shell composite [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] by a superficial chiral etching method. The [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] composite was utilized as a novel chiral stationary phase for HPLC enantioseparation. Various racemates were separated on the [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco]-packed column (column A). It exhibited good chiral resolving ability toward many different kinds of racemates, especially chiral drugs. Among them, the highest resolution value for 1,2-diphenyl-1,2-ethanediol reach 2.70. The relative standard deviations of retention time and peak area for repeated separation of 1,2-diphenyl-1,2-ethanol were 0.45 % and 0.81 %, respectively. Compared with the resolution ability of [Cu2 ((+)-Cam)2 Dabco]-packed column (column B), the column A shows higher column efficiency and better separation performance than those of column B. The results indicated that the [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] as stationary phase can greatly improve the column efficiency and chiral resolution ability of chiral metal-organic frameworks, which demonstrated that the superficial chiral etching as an economic and efficient strategy opens up a new way for the application of metal-organic frameworks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan-Rui Lu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Yun-Yan Yu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Ji-Kai Chen
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Ping Guo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Yu-Ping Yang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Cai-Fang Liu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, P.R. China
| |
Collapse
|
12
|
Feng X, Peng D, Shan M, Niu X, Zhang Y. Facilitated propylene transport in mixed matrix membranes containing
ZIF
‐8@Agmim core‐shell hybrid material. AIChE J 2022. [DOI: 10.1002/aic.17707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoquan Feng
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Donglai Peng
- School of Chemical Engineering Zhengzhou University Zhengzhou China
- School of Material & Chemical Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Meixia Shan
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Xinpu Niu
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Yatao Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
13
|
Abdollahzadeh M, Chai M, Hosseini E, Zakertabrizi M, Mohammad M, Ahmadi H, Hou J, Lim S, Habibnejad Korayem A, Chen V, Asadnia M, Razmjou A. Designing Angstrom-Scale Asymmetric MOF-on-MOF Cavities for High Monovalent Ion Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107878. [PMID: 34921462 DOI: 10.1002/adma.202107878] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Biological ion channels feature angstrom-scale asymmetrical cavity structures, which are the key to achieving highly efficient separation and sensing of alkali metal ions from aqueous resources. The clean energy future and lithium-based energy storage systems heavily rely on highly efficient ionic separations. However, artificial recreation of such a sophisticated biostructure has been technically challenging. Here, a highly tunable design concept is introduced to fabricate monovalent ion-selective membranes with asymmetric sub-nanometer pores in which energy barriers are implanted. The energy barriers act against ionic movements, which hold the target ion while facilitating the transport of competing ions. The membrane consists of bilayer metal-organic frameworks (MOF-on-MOF), possessing a 6 to 3.4-angstrom passable cavity structure. The ionic current measurements exhibit an unprecedented ionic current rectification ratio of above 100 with exceptionally high selectivity ratios of 84 and 80 for K+ /Li+ and Na+ / Li+ , respectively (1.14 Li+ mol m-2 h-1 ). Furthermore, using quantum mechanics/molecular mechanics, it is shown that the combined effect of spatial hindrance and nucleophilic entrapment to induce energy surge baffles is responsible for the membrane's ultrahigh selectivity and ion rectification. This work demonstrates a striking advance in developing monovalent ion-selective channels and has implications in sensing, energy storage, and separation technologies.
Collapse
Affiliation(s)
| | - Milton Chai
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ehsan Hosseini
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Zakertabrizi
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Munirah Mohammad
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hadi Ahmadi
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jingwei Hou
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sean Lim
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
- Electron Microscope Unit, Mark Wainright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Asghar Habibnejad Korayem
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
14
|
Yang Q, Wang Y, Tang X, Zhang Q, Dai S, Peng H, Lin Y, Tian Z, Lu Z, Chen L. Ligand Defect Density Regulation in Metal-Organic Frameworks by Functional Group Engineering on Linkers. NANO LETTERS 2022; 22:838-845. [PMID: 35005972 DOI: 10.1021/acs.nanolett.1c04574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Defects in solid materials vitally determine their physicochemical properties; however, facile regulation of the defect density is still a challenge. Herein, we demonstrate that the ligand defect density of metal-organic frameworks (MOFs) with a UiO-66 structural prototype is precisely regulated by tuning the linker groups (X = OMe, Me, H, F). Detailed analyses reveal that the ligand defect concentration is positively correlated with the electronegativity of linker groups, and Ce-UiO-66-F, constructed by F-containing ligands and Ce-oxo nodes, possesses the superior ligand defect density (>25%) and identifiable irregular periodicity. The increase in ligand defect density results in the reduction of the valence state and the coordination number of Ce sites in Ce-UiO-66-X, and this merit further validates the relationship between the defective structure and catalytic performance of CO2 cycloaddition reaction. This facile, efficient, and reliable strategy may also be applicable to precisely constructing the defect density of porous materials in the future.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yinming Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuan Tang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Huaitao Peng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhiyi Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
15
|
Prasetya N, Himma NF, Sutrisna PD, Wenten IG. Recent advances in dual-filler mixed matrix membranes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2021-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mixed matrix membranes (MMMs) have been widely developed as an attractive solution to overcome the drawbacks found in most polymer membranes, such as permeability-selectivity trade-off and low physicochemical stability. Numerous fillers based on inorganic, organic, and hybrid materials with various structures including porous or nonporous, and two-dimensional or three-dimensional, have been used. Demanded to further improve the characteristics and performances of the MMMs, the use of dual-filler instead of a single filler has then been proposed, from which multiple effects could be obtained. This article aims to review the recent development of MMMs with dual filler and discuss their performances in diverse potential applications. Challenges in this emerging field and outlook for future research are finally provided.
Collapse
Affiliation(s)
- Nicholaus Prasetya
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Barrer Centre, Imperial College London , Exhibition Road , London SW7 2AZ , UK
| | - Nurul Faiqotul Himma
- Department of Chemical Engineering , Universitas Brawijaya , Jalan Mayjen Haryono 167 , Malang 65145 , Indonesia
| | - Putu Doddy Sutrisna
- Department of Chemical Engineering , Universitas Surabaya , Jalan Raya Kalirungkut (Tenggilis) , Surabaya 60293 , Indonesia
| | - I Gede Wenten
- Research Centre for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
- Department of Chemical Engineering , Institut Teknologi Bandung , Jalan Ganesha 10 , Bandung 40132 , Indonesia
| |
Collapse
|
16
|
Wang Y, Liu L, Sang K, Wang Y, Zhang C, Dong H, Bai J. An efficient chiral porous catalyst support – Hypercrosslinked amino acid polymer. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Wang J, Xu Y, Qu H, Ma H, Chang R, Ma J. A Highly Permeable Mixed Matrix Membrane Containing a Vertically Aligned Metal-Organic Framework for CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50441-50450. [PMID: 34636540 DOI: 10.1021/acsami.1c16085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delicately regulating the distribution morphology of a filler is an effective strategy to promote the separation performance of mixed matrix membranes (MMMs). Herein, we describe a highly permeable metal-organic framework (MOF)-based MMM comprising vertically aligned ZIF-8 (V-ZIF-8) and polysulfone (PSF). The V-ZIF-8 is distributed uniformly within the PSF matrix. With this unique distribution morphology of ZIF-8, the shortest gas transport pathways are formed in the membrane. Meanwhile, the molecular-sieving pores of ZIF-8 can allow CO2 to pass through and crowding out N2. The obtained V-ZIF-8/PSF membrane shows a high CO2 permeability of 89.7 Barrer and a CO2/N2 selectivity of 30.0 that is stable over a period of 50 h. The CO2 permeability is enhanced about 11.8 times than that of the pure PSF membrane. The results prove that the vertically aligned distribution morphology of an MOF in a polymer matrix is an effective method to improve the separation performance of a membrane, providing a new concept for designing more advanced membranes.
Collapse
Affiliation(s)
- Jia Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yinghui Xu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Hongqiang Qu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Haiyun Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ran Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Jing Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
18
|
Zhao Z, Shehzad MA, Wu B, Wang X, Yasmin A, Zhu Y, Wang X, He Y, Ge L, Li X, Xu T. Spray-deposited thin-film composite MOFs membranes for dyes removal. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Hong DH, Shim HS, Ha J, Moon HR. MOF‐on‐MOF
Architectures: Applications in Separation, Catalysis, and Sensing. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Doo Hwan Hong
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hui Su Shim
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Junsu Ha
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| |
Collapse
|
20
|
Inter-MOF hybrid (IMOFH): A concise analysis on emerging core–shell based hierarchical and multifunctional nanoporous materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213786] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Fan ST, Qiu ZJ, Xu RY, Zhang SX, Chen ZH, Nie ZJ, Shu HR, Guo K, Zhang S, Li BJ. Ultrahigh Carbon Dioxide-Selective Composite Membrane Containing a γ-CD-MOF Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13034-13043. [PMID: 33719405 DOI: 10.1021/acsami.0c18861] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixed matrix membranes (MMMs) for CO2 separation have overcome the trade-off between gas permeability and gas selectivity to some extent. However, most MMMs still are prepared in lab- and pilot-scales since the permeability and selectivity of CO2 are not good enough to reach the economically available requirements. Moreover, the fabrication of few MMMs with good separation performance is time-consuming or need harsh conditions. In this study, a novel MOF-based composite membrane (PAN-γ-CD-MOF-PU membrane) was successfully fabricated by a facile and fast spin-coating method. In the two-step coating process, we applied a uniform selective layer of γ-cyclodextrin-MOF (γ-CD-MOF) on porous polyacrylonitrile and then coated a layer of polyurethane on the γ-CD-MOF layer. The entire membrane formation process was about 30 s. The formation of a unique γ-CD-MOF layer greatly improved the separation ability of CO2 (the CO2 permeability is 70.97 barrers; the selectivity to CO2/N2 and CO2/O2 are 253.46 and 154.28, respectively). The gas separation performance can exceed the Robeson upper limit obviously and the selectivity is better than other MOF-based composite membranes. In addition, the PAN-γ-CD-MOF-PU membrane is strong and flexible. Therefore, the PAN-γ-CD-MOF-PU membrane developed in this study has great potential in large-scale industrial separation of CO2.
Collapse
Affiliation(s)
- Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Zhen-Jiang Qiu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruo-Yu Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Shao-Xia Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hui Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Zi-Jun Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Hao-Ran Shu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Kun Guo
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
22
|
Zhang S, Zhang S, Yin N, Huang Z, Xu W, Yue K, Li X, Li D. Exploring Reversible Thermochromic Behavior in a Rare Ni(II)-MOF System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6430-6441. [PMID: 33525879 DOI: 10.1021/acsami.0c21116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermochromic metal-organic frameworks (MOFs) are promising functional materials for a wide range of applications due to their ability to exhibit color variation under external temperature stimuli, yet the development of them with high cyclability and efficient regeneration processes remains challenging. Here, presented is a rare example of an ultrastable Ni(II)-MOF exhibiting an unprecedented reversible four-step color change between two complementary colors in a wide temperature range, which could be repeated for at least 500 cycles without losing crystallinity and thermochromic performance. Notably, the regeneration can be achieved within 1 min by simply letting the crystals cool naturally in the air, facilitated by the unique nature of the channels' inner surface. The reversible thermochromic behavior is owing to a series of reversible crystal structure changes with temperature, including the stepwise dehydration/rehydration process, and structural changes. This work facilitates the future development of more MOF-based reversible thermochromic materials with excellent performance and improved practical applicability.
Collapse
Affiliation(s)
- Shihui Zhang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Shuyu Zhang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Nan Yin
- Thermochemistry Laboratory, Liaoning Province Key Laboratory of Thermochemistry for Energy and Materials, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenqi Huang
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Wenhua Xu
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Kefen Yue
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, No. 1, Xuefu Ave., Xi'an 710127, China
| | - Xiuyuan Li
- Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| |
Collapse
|
23
|
Ha J, Moon HR. Synthesis of MOF-on-MOF architectures in the context of interfacial lattice matching. CrystEngComm 2021. [DOI: 10.1039/d0ce01883j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight summarises the previously reported MOF-on-MOF systems, with a focus on the presented crystallographic information and classification of the systems according to lattice parameter matching.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
24
|
Wu MX, Wang Y, Zhou G, Liu X. Core-Shell MOFs@MOFs: Diverse Designability and Enhanced Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54285-54305. [PMID: 33231416 DOI: 10.1021/acsami.0c16428] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-Organic frameworks (MOFs), especially MOF-based composites, performed an irreplaceable role in the material fields. By virtue of the tailorability of MOFs, core-shell MOFs@MOFs composites with diverse designability and enhanced selectivity have inspired infinite scientific interest. This review will highlight an up-to-date overview of the designability and enhanced selectivity of core-shell MOFs@MOFs composites, covering the synthetic strategies of an epitaxial growth method, postsynthetic modification, and one-pot synthesis as well as the synergistic selective performance of the synthesized MOFs@MOFs in catalysis, adsorption and separation, and molecular recognition. Finally, the potential development trend and challenges toward core-shell MOFs@MOFs are addressed.
Collapse
Affiliation(s)
- Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guohui Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
25
|
Hafeez S, Safdar T, Pallari E, Manos G, Aristodemou E, Zhang Z, Al-Salem SM, Constantinou A. CO2 capture using membrane contactors: a systematic literature review. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1992-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractWith fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.
Collapse
|
26
|
Wu B, Fu J, Zhou Y, Luo S, Zhao Y, Quan G, Pan X, Wu C. Tailored core‒shell dual metal-organic frameworks as a versatile nanomotor for effective synergistic antitumor therapy. Acta Pharm Sin B 2020; 10:2198-2211. [PMID: 33304786 PMCID: PMC7715426 DOI: 10.1016/j.apsb.2020.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/05/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
Malignant tumor has become an urgent threat to global public healthcare. Because of the heterogeneity of tumor, single therapy presents great limitations while synergistic therapy is arousing much attention, which shows desperate need of intelligent carrier for co-delivery. A core‒shell dual metal–organic frameworks (MOFs) system was delicately designed in this study, which not only possessed the unique properties of both materials, but also provided two individual specific functional zones for co-drug delivery. Photosensitizer indocyanine green (ICG) and chemotherapeutic agent doxorubicin (DOX) were stepwisely encapsulated into the nanopores of MIL-88 core and ZIF-8 shell to construct a synergistic photothermal/photodynamic/chemotherapy nanoplatform. Except for efficient drug delivery, the MIL-88 could be functioned as a nanomotor to convert the excessive hydrogen peroxide at tumor microenvironment into adequate oxygen for photodynamic therapy. The DOX release from MIL-88-ICG@ZIF-8-DOX nanoparticles was triggered at tumor acidic microenvironment and further accelerated by near-infrared (NIR) light irradiation. The in vivo antitumor study showed superior synergistic antitumor effect by concentrating the nanoparticles into dissolving microneedles as compared to intravenous and intratumoral injection of nanoparticles, with a significantly higher inhibition rate. It is anticipated that the multi-model synergistic system based on dual-MOFs was promising for further biomedical application.
Collapse
Affiliation(s)
- Biyuan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jintao Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sulan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Corresponding authors.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Corresponding authors.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
27
|
A nature-inspired hydrogen-bonded supramolecular complex for selective copper ion removal from water. Nat Commun 2020; 11:3947. [PMID: 32769977 PMCID: PMC7415137 DOI: 10.1038/s41467-020-17757-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Herein, we present a scalable approach for the synthesis of a hydrogen-bonded organic–inorganic framework via coordination-driven supramolecular chemistry, for efficient remediation of trace heavy metal ions from water. In particular, using copper as our model ion of interest and inspired by nature’s use of histidine residues within the active sites of various copper binding proteins, we design a framework featuring pendant imidazole rings and copper-chelating salicylaldoxime, known as zinc imidazole salicylaldoxime supramolecule. This material is water-stable and exhibits unprecedented adsorption kinetics, up to 50 times faster than state-of-the-art materials for selective copper ion capture from water. Furthermore, selective copper removal is achieved using this material in a pH range that was proven ineffective with previously reported metal–organic frameworks. Molecular dynamics simulations show that this supramolecule can reversibly breathe water through lattice expansion and contraction, and that water is initially transported into the lattice through hopping between hydrogen-bond sites. Heavy metals and metalloids pose major threats to health and environmental ecosystems, thus systems for low-cost remediation are needed. Here the authors report the scalable design of a hydrogen-bonded organic–inorganic framework for selective removal of trace heavy metal ions from water.
Collapse
|
28
|
Meng J, Liu X, Niu C, Pang Q, Li J, Liu F, Liu Z, Mai L. Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem Soc Rev 2020; 49:3142-3186. [PMID: 32249862 DOI: 10.1039/c9cs00806c] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-organic frameworks (MOFs) as a new kind of porous crystalline materials have attracted much interest in many applications due to their high porosity, diverse structures, and controllable chemical structures. However, the specific geometrical morphologies, limited functions and unsatisfactory performances of pure MOFs hinder their further applications. In recent years, an efficient approach to synthesize new composites to overcome the above issues has been achieved, by integrating MOF coatings with other functional materials, which have synergistic advantages in many potential applications, including batteries, supercapacitors, catalysis, gas storage and separation, sensors, drug delivery/cytoprotection and so on. Nevertheless, the systemic synthesis strategies and the relationships between their structures and application performances have not been reviewed comprehensively yet. This review emphasizes the recent advances in versatile synthesis strategies and broad applications of MOF coatings. A comprehensive discussion of the fundamental chemistry, classifications and functions of MOF coatings is provided first. Next, by modulating the different states (e.g. solid, liquid, and gas) of metal ion sources and organic ligands, the synthesis methods for MOF coatings on functional materials are systematically summarized. Then, many potential applications of MOF coatings are highlighted and their structure-property correlations are discussed. Finally, the opportunities and challenges for the future research of MOF coatings are proposed. This review on the deep understanding of MOF coatings will bring better directions into the rational design of high-performance MOF-based materials and open up new opportunities for MOF applications.
Collapse
Affiliation(s)
- Jiashen Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Chaojiang Niu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Quan Pang
- Department of Energy and Resources Engineering, and Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Jiantao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Fang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Ziang Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
29
|
|
30
|
Song P, Mao X, Ren Y, Zeng H, Lu Q. Buckling Effect of Sole Zeolitic Imidazolate Framework-8 Nanoparticles Adsorbed at the Water/Oil Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2322-2329. [PMID: 32050078 DOI: 10.1021/acs.langmuir.9b03459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The buckling phenomenon of sole zeolitic imidazolate framework-8 (ZIF-8) particles adsorbed at the water/oil interface was systematically studied. The droplet of ZIF-8 water dispersion was pended in oil for a certain time period and manually extracted to decrease the volume. With the reduction of interfacial area, the ZIF-8 particles were jammed together to form a wrinkling solid film at the water/oil interface, which could withstand the extraction of the droplet and be regenerated. The size and concentration of the particles affected the assembly kinetics. The rapidest assembly was observed for the medium-sized ZIF-8 particles (m-ZIF-8) among the three sizes tested (1.81 μm, 258 nm, and 51 nm). The droplet of 0.91 wt % m-ZIF-8 reached a nearly full surface coverage in 13 min, faster than those with the lower concentration of 0.46 or 0.28 wt %. The pH of the solution, ranging between 6 and 10.7, affected both the assembly kinetics and film stability. Cryo-scanning electron microscopy images of frozen m-ZIF-8-stabilized Picking emulsions showed a monolayer of ZIF-8 wetted by both oil and water phases. The observed buckling effect could be attributed to the stable adsorption of ZIF-8 at the water/oil interface and the interparticle interactions, related to the unique surface chemistry and polyhedral shape of the ZIF-8 crystals. This work provided some understanding on the interfacial property of ZIF-8 and the mechanism of sole ZIF-8-stabilized Pickering emulsions.
Collapse
Affiliation(s)
- Ping Song
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yuxuan Ren
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
31
|
Rebber M, Willa C, Koziej D. Organic-inorganic hybrids for CO 2 sensing, separation and conversion. NANOSCALE HORIZONS 2020; 5:431-453. [PMID: 32118212 DOI: 10.1039/c9nh00380k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motivated by the air pollution that skyrocketed in numerous regions around the world, great effort was placed on discovering new classes of materials that separate, sense or convert CO2 in order to minimise impact on human health. However, separation, sensing and conversion are not only closely intertwined due to the ultimate goal of improving human well-being, but also because of similarities in material prerequisites -e.g. affinity to CO2. Partly inspired by the unrivalled performance of complex natural materials, manifold inorganic-organic hybrids were developed. One of the most important characteristics of hybrids is their design flexibility, which results from the combination of individual constituents with specific functionality. In this review, we discuss commonly used organic, inorganic, and inherently hybrid building blocks for applications in separation, sensing and catalytic conversion and highlight benefits like durability, activity, low-cost and large scale fabrication. Moreover, we address obstacles and potential future developments of hybrid materials. This review should inspire young researchers in chemistry, physics and engineering to identify and overcome interdisciplinary research challenges by performing academic research but also - based on the ever-stricter emission regulations like carbon taxes - through exchanges between industry and science.
Collapse
Affiliation(s)
- Matthias Rebber
- University of Hamburg, Institute for Nanostructure and Solid State Physics, Center for Hybrid Nanostructures (CHyN), Luruper Chaussee 149, Building 600, 22761 Hamburg, Germany.
| | | | | |
Collapse
|
32
|
Zhu Y, Wang WD, Sun X, Fan M, Hu X, Dong Z. Palladium Nanoclusters Confined in MOF@COP as a Novel Nanoreactor for Catalytic Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7285-7294. [PMID: 31927906 DOI: 10.1021/acsami.9b21802] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-nanocluster-doped porous materials are attracting considerable research attention due to their specific catalytic performance. In this study, core-shell metal-organic frameworks@covalent organic polymer (MOF@COP) nanocomposites were formed by the covalent linking of chemically stable COP on the surface of size-selective UiO-66-NH2. Pd nanoclusters with an average diameter of ∼0.8 nm were successfully confined in UiO-66-NH2@COP, and the obtained nanoreactor, referred to as UiO-66-NH2@COP@Pd, exhibited abundant porosity, high stability, and large surface area. Notably, the UiO-66-NH2@COP@Pd nanoreactor exhibited superior catalytic activity and stability for the catalytic reduction of 4-nitrophenol and hydrogenation of other nitroarenes, demonstrating the potential of Pd-cluster-doped MOF@COP hybrid materials as candidates for efficient catalytic hydrogenation. This study may provide new avenues for the construction of MOF@COP-hybrid-material-based heterogeneous catalysts for efficient catalytic applications.
Collapse
Affiliation(s)
- Yangyang Zhu
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Wei David Wang
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Xun Sun
- Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering , Yantai University , Yantai 264005 , P. R. China
| | - Mengying Fan
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Xiwei Hu
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| | - Zhengping Dong
- Laboratory of Special Function Materials and Structure Design of the Ministry of Education, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
33
|
Lee S, Oh S, Oh M. Atypical Hybrid Metal–Organic Frameworks (MOFs): A Combinative Process for MOF‐on‐MOF Growth, Etching, and Structure Transformation. Angew Chem Int Ed Engl 2019; 59:1327-1333. [DOI: 10.1002/anie.201912986] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Sujeong Lee
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Sojin Oh
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Moonhyun Oh
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| |
Collapse
|
34
|
Lee S, Oh S, Oh M. Atypical Hybrid Metal–Organic Frameworks (MOFs): A Combinative Process for MOF‐on‐MOF Growth, Etching, and Structure Transformation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912986] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sujeong Lee
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Sojin Oh
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| | - Moonhyun Oh
- Department of Chemistry Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Korea
| |
Collapse
|
35
|
Abstract
AbstractMetal-organic frameworks (MOFs) have emerged as a class of promising membrane materials. UiO-66 is a prototypical and stable MOF material with a number of analogues. In this article, we review five approaches for fabricating UiO-66 polycrystalline membranes including in situ synthesis, secondary synthesis, biphase synthesis, gas-phase deposition and electrochemical deposition, as well as their applications in gas separation, pervaporation, nanofiltration and ion separation. On this basis, we propose possible methods for scalable synthesis of UiO-66 membranes and their potential separation applications in the future.
Collapse
|
36
|
Selective Dye Adsorption by Zeolitic Imidazolate Framework-8 Loaded UiO-66-NH 2. NANOMATERIALS 2019; 9:nano9091283. [PMID: 31500352 PMCID: PMC6781039 DOI: 10.3390/nano9091283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 11/16/2022]
Abstract
In this study, Zeolitic Imidazolate Framework-8 (ZIF-8)-loaded UiO-66-NH2 was synthesized, characterized, and analyzed for its potential to efficiently remove dyes. The selective adsorption on ZIF-8-loaded UiO-66-NH2 or its parent MOFs (UiO-66-NH2 and ZIF-8) in the mixed dyes solution was explored, including anionic dye (methyl orange (MO)) and cationic dyes (methylene blue (MB) and rhodamine B (RhB)). ZIF-8-loaded UiO-66-NH2 displayed much better selectivity to MB than its parent MOFs. Adsorption capacity of ZIF-8-loaded UiO-66-NH2 (173 mg/g) toward MB was found to be 215% higher than UiO-66-NH2 (55 mg/g). A kinetics study based on adsorption data demonstrated that the adsorption process most closely matched with the model of pseudo-second-order kinetic and Langmuir isotherm. The adsorption was an exothermic and spontaneous physical process as revealed by the values of thermodynamic parameters. Furthermore, reusability of ZIF-8-loaded UiO-66-NH2 was investigated and revealed the significant regeneration efficiency in adsorption capacity for MB even after four adsorption cycles. Experimental results proved that the interaction between ZIF-8-loaded UiO-66-NH2 and MB was mainly affected by the mechanism, for instance, electrostatic interaction as well as π–π stacking interactions.
Collapse
|
37
|
Lv S, Zhang K, Zhu L, Tang D, Niessner R, Knopp D. H2-Based Electrochemical Biosensor with Pd Nanowires@ZIF-67 Molecular Sieve Bilayered Sensing Interface for Immunoassay. Anal Chem 2019; 91:12055-12062. [DOI: 10.1021/acs.analchem.9b03177] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shuzhen Lv
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Kangyao Zhang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Ling Zhu
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Reinhard Niessner
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, München D-81377, Germany
| | - Dietmar Knopp
- Chair for Analytical Chemistry and Water Chemistry, Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, München D-81377, Germany
| |
Collapse
|
38
|
Ma L, Svec F, Lv Y, Tan T. Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chem Asian J 2019; 14:3502-3514. [DOI: 10.1002/asia.201900843] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Liang Ma
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Frantisek Svec
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Yongqin Lv
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| | - Tianwei Tan
- College of Life Science and TechnologyBeijing University of Chemical Technology No 15th North Third Ring East Road, Chaoyang District Beijing 100029 China
| |
Collapse
|
39
|
Luo Y, Ahmad M, Schug A, Tsotsalas M. Rising Up: Hierarchical Metal-Organic Frameworks in Experiments and Simulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901744. [PMID: 31106914 DOI: 10.1002/adma.201901744] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Controlled synthesis across several length scales, ranging from discrete molecular building blocks to size- and morphology-controlled nanoparticles to 2D sheets and thin films and finally to 3D architectures, is an advanced and highly active research field within both the metal-organic framework (MOF) domain and the overall material science community. Along with synthetic progress, theoretical simulations of MOF structures and properties have shown tremendous progress in both accuracy and system size. Further advancements in the field of hierarchically structured MOF materials will allow the optimization of their performance; however, this optimization requires a deep understanding of the different synthesis and processing techniques and an enhanced implementation of material modeling. Such modeling approaches will allow us to select and synthesize the highest-performing structures in a targeted rational manner. Here, recent progress in the synthesis of hierarchically structured MOFs and multiscale modeling and associated simulation techniques is presented, along with a brief overview of the challenges and future perspectives associated with a simulation-based approach toward the development of advanced hierarchically structured MOF materials.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Momin Ahmad
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Institute for Theoretical Solid State Theory, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputer Centre, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| |
Collapse
|
40
|
Luz I, Toy L, Rabie F, Lail M, Soukri M. Synthesis of Soluble Metal Organic Framework Composites for Mixed Matrix Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15638-15645. [PMID: 30977356 DOI: 10.1021/acsami.9b02622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A general, green, efficient, and easily scalable methodology has been developed to more effectively incorporate (disperse) metal-organic frameworks (MOFs) into polymer technologies via solid state synthesis of any MOF nanocrystals within soluble mesoporous polymers. The resulting solid hybrid materials (pellets) can be directly transformed into colloidal MOF polymeric suspensions (inks) by simple dissolution in organic solvents. The straightforward use of novel colloidal MOF polymeric inks as ultimate additive for mixed matrix membranes resulted in unprecedented snakeskin microstructure exhibiting outstanding selectivity for CO2 over N2 (>100) from post-combustion flue gas at very low and well-dispersed MOF nanocrystal concentrations ranging from 1 to 7 wt %. This novel methodology brings one of the most versatile routes yet reported to transform any MOF into more functional forms that can be directly integrated into any conventional polymer technology at the commercial scale.
Collapse
Affiliation(s)
- Ignacio Luz
- RTI International , Research Triangle Park , North Carolina 27709 , United States
| | - Lora Toy
- RTI International , Research Triangle Park , North Carolina 27709 , United States
| | - Feras Rabie
- RTI International , Research Triangle Park , North Carolina 27709 , United States
| | - Marty Lail
- RTI International , Research Triangle Park , North Carolina 27709 , United States
| | - Mustapha Soukri
- RTI International , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
41
|
Yu G, Zou X, Sun L, Liu B, Wang Z, Zhang P, Zhu G. Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO 2 Separation with Crystal-Like Gas Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806853. [PMID: 30803076 DOI: 10.1002/adma.201806853] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Most metal-organic-framework- (MOF-) based hybrid membranes face the challenge of low gas permeability in CO2 separation. This study presents a new strategy of interweaving UiO-66 and PIM-1 to build freeways in UiO-66-CN@sPIM-1 membranes for fast CO2 transport. In this strategy, sPIM-1 is rigidified via thermal treatment to make polymer voids permanent, and concurrently polymer chains are mutually linked onto UiO-66-CN crystals to minimize interfacial defects. The pore chemistry of UiO-66-CN is kept intact in hybrid membranes, allowing full utilization of MOF pores and selective adsorption for CO2 . Separation results show that UiO-66-CN@sPIM-1 membranes possess exceptionally high CO2 permeability (15433.4-22665 Barrer), approaching to that of UiO-66-NH2 crystal (65-75% of crystal-derived permeability). Additionally, the CO2 /N2 permeation selectivity for a representative membrane (23.9-28.6) moves toward that of single crystal (24.6-29.6). The unique structure and superior CO2 /N2 separation performance make UiO-66-CN@sPIM-1 membranes promising in practical CO2 separations.
Collapse
Affiliation(s)
- Guangli Yu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lei Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Baisong Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Panpan Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
42
|
|
43
|
Liu Y, Lin S, Liu Y, Sarkar AK, Bediako JK, Kim HY, Yun YS. Super-Stable, Highly Efficient, and Recyclable Fibrous Metal-Organic Framework Membranes for Precious Metal Recovery from Strong Acidic Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805242. [PMID: 30690878 DOI: 10.1002/smll.201805242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Precious metals such as palladium (Pd) and platinum (Pt) are marvelous materials in the fields of electronic and catalysis, but they are tapering day by day. Zr(IV)-based metal-organic frameworks (MOFs) are competent for their recovery, notably in harsh environments, while the general powder form limits their practical application. Porous MOF-based membranes with ultraefficient metal ion permeation, strong stability, and high selectivity are, therefore, strikingly preferred. Herein, a set of polymeric fibrous membranes incorporated with the UiO-66 series are fabricated; their adsorption/desorption capabilities toward Pd(II) and Pt(IV) are evaluated from strongly acidic solutions; and the MOF-polymer compatibilities are investigated. Polyurethane (PU)/UiO-66-NH2 showed strong acid resistance and high chemical stability, which are attributable to strong π-π interactions between PU and MOF nanoparticles with a high configuration of energy. The as-fabricated MOF membranes show extremely good adsorption/desorption performances without ruptures/coalitions of nanofibers or leak of MOF nanoparticles, and successfully display the efficacy in a gravity-driven or even continuous-flow system with good recycle performance and selectivity. The as-fabricated MOF membranes set an example of potential MOF-polymer compatibility for practical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of BIN Convergence Technology, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Shuo Lin
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Yanan Liu
- Department of BIN Convergence Technology, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Amit Kumar Sarkar
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - John Kwame Bediako
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Hak Yong Kim
- Department of BIN Convergence Technology, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Chonbuk National University, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
44
|
Liu S, Yao S, Liu B, Sun X, Yuan Y, Li G, Zhang L, Liu Y. Two ultramicroporous metal-organic frameworks assembled from binuclear secondary building units for highly selective CO 2/N 2 separation. Dalton Trans 2019; 48:1680-1685. [PMID: 30607402 DOI: 10.1039/c8dt04424d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Two novel metal-organic frameworks [Ni2(μ2-Cl)(BTBA)2·DMF]·Cl·3DMF (JLU-MOF56, BTBA = 3,5-bis(triazol-1-yl)benzoic acid) and [Co2(μ2-Cl)(BTBA)2·DMF]·Cl·3DMF (JLU-MOF57) have been successfully synthesized under solvothermal conditions. Crystallographic analysis indicates that the two compounds with different metal ions are isoreticular and both are constructed from binuclear [M2(μ2-Cl)(COO)2N4] (M = Co, Ni) and a 3-connected hetero-N,O donor ligand. The overall framework possesses a (3,6)-connected dag topology. Furthermore, both of them feature ultramicroporous channels of 3.5 Å× 3.4 Å, which are suitable for adsorbing smaller carbon dioxide (CO2) gas molecules but not larger nitrogen (N2) gas molecules. Therefore, JLU-MOF56 and JLU-MOF57 exhibit good performance for CO2/N2 separation, and are promising materials for gas adsorption and purification.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Shuo Yao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Songling Road 238, Qingdao 266100, China.
| | - Bing Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xiaodong Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Yang Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Lirong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
45
|
Wang K, Xing Z, Du M, Zhang S, Li Z, Pan K, Zhou W. Plasmon Ag and CdS quantum dot co-decorated 3D hierarchical ball-flower-like Bi5O7I nanosheets as tandem heterojunctions for enhanced photothermal–photocatalytic performance. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01945f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bi5O7I/Ag/CdS tandem heterojunction photocatalysts show excellent photothermal and photocatalytic performance, which is attributed to the formation of tandem heterojunctions, surface plasmon resonance, and 3D hierarchical structure.
Collapse
Affiliation(s)
- Ke Wang
- Department of Environmental Science
- School of Chemistry and Materials Science
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
| | - Zipeng Xing
- Department of Environmental Science
- School of Chemistry and Materials Science
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
| | - Meng Du
- Department of Environmental Science
- School of Chemistry and Materials Science
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
| | - Shiyu Zhang
- Department of Environmental Science
- School of Chemistry and Materials Science
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
| | - Zhenzi Li
- Department of Epidemiology and Biostatistics
- Harbin Medical University
- Harbin 150086
- P. R. China
| | - Kai Pan
- Department of Environmental Science
- School of Chemistry and Materials Science
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
| | - Wei Zhou
- Department of Environmental Science
- School of Chemistry and Materials Science
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education of the People's Republic of China
- Heilongjiang University
| |
Collapse
|
46
|
Gu Q, Albert Ng TC, Sun Q, Kotb Elshahawy AM, Lyu Z, He Z, Zhang L, Ng HY, Zeng K, Wang J. Heterogeneous ZIF-L membranes with improved hydrophilicity and anti-bacterial adhesion for potential application in water treatment. RSC Adv 2019; 9:1591-1601. [PMID: 35518033 PMCID: PMC9059713 DOI: 10.1039/c8ra08758j] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
Although different metal–organic framework (MOF) membranes have been widely studied for gas separation, their application for water treatment is still in its infancy. MOF membranes with improved hydrophilicity and stability are particularly essential for water/wastewater treatment. Herein, we have successfully developed heterogeneous membranes (Zn/Co-ZIF-L) composed of vertically standing leaf-like crystals of Zn-ZIF-L grown in situ onto porous ceramic supports, followed by the subsequent heterogeneous growth of Co-ZIF-L. The heterogeneous membranes show improved hydrophilicity (WCA = 13.6 ± 1.6°) and enhanced anti-bacterial adhesion. Significantly, they simultaneously deliver a relative high water flux and much improved anti-bacterial adhesion when compared with the homogeneous membranes (Co-ZIF-L and Zn-ZIF-L). The improvements are attributed to the intrinsic hydrophilic nature of Co-ZIF-L, their epitaxial growth onto Zn-ZIF-L as well as the increased surface roughness. The success of constructing a heterogeneous MOF structure shows an effective strategy to achieve the hydrophilic MOF membranes with considerably enhanced stability for water treatment. Heterogeneous Zn/Co-ZIF-L membranes were prepared through the successive growth of Zn-ZIF-L and Co-ZIF-L on the macroporous ceramic supports, and the obtained heterogeneous membranes showed improved hydrophilicity and anti-bacterial adhesion.![]()
Collapse
Affiliation(s)
- Qilin Gu
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore
| | - Tze Chiang Albert Ng
- Centre for Water Research
- Department of Civil and Environmental Engineering
- National University of Singapore
- Singapore
| | - Qiaomei Sun
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | | | - Zhiyang Lyu
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore
| | - Zeming He
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore
| | - Lei Zhang
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore
| | - How Yong Ng
- Centre for Water Research
- Department of Civil and Environmental Engineering
- National University of Singapore
- Singapore
| | - Kaiyang Zeng
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| | - John Wang
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
47
|
Cheng Y, Ying Y, Japip S, Jiang SD, Chung TS, Zhang S, Zhao D. Advanced Porous Materials in Mixed Matrix Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802401. [PMID: 30048014 DOI: 10.1002/adma.201802401] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/19/2018] [Indexed: 05/18/2023]
Abstract
Membrane technology has gained great interest in industrial separation processing over the past few decades owing to its high energy efficiency, small capital investment, environmentally benign characteristics, and the continuous operation process. Among various types of membranes, mixed matrix membranes (MMMs) combining the merits of the polymer matrix and inorganic/organic fillers have been extensively investigated. With the rapid development of chemistry and materials science, recent studies have shifted toward the design and application of advanced porous materials as promising fillers to boost the separation performance of MMMs. Here, first a comprehensive overview is provided on the choices of advanced porous materials recently adopted in MMMs, including metal-organic frameworks, porous organic frameworks, and porous molecular compounds. Novel trends in MMMs induced by these advanced porous fillers are discussed in detail, followed by a summary of applying these MMMs for gas and liquid separations. Finally, a concise conclusion and current challenges toward the industrial implementation of MMMs are outlined, hoping to provide guidance for the design of high-performance membranes to meet the urgent needs of clean energy and environmental sustainability.
Collapse
Affiliation(s)
- Youdong Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Susilo Japip
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shu-Dong Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
48
|
Abstract
The inherent porous nature and facile tunability of metal–organic frameworks (MOFs) make them ideal candidates for use in multiple fields. MOF hybrid materials are derived from existing MOFs hybridized with other materials or small molecules using a variety of techniques. This led to superior performance of the new materials by combining the advantages of MOF components and others. In this review, we discuss several hybridization methods for the preparation of various MOF hybrids with representative examples from the literature. These methods include covalent modifications, noncovalent modifications, and using MOFs as templates or precursors. We also review the applications of the MOF hybrids in the fields of catalysis, drug delivery, gas storage and separation, energy storage, sensing, and others.
Collapse
|
49
|
Ji H, Lee S, Park J, Kim T, Choi S, Oh M. Improvement in Crystallinity and Porosity of Poorly Crystalline Metal-Organic Frameworks (MOFs) through Their Induced Growth on a Well-Crystalline MOF Template. Inorg Chem 2018; 57:9048-9054. [PMID: 30044605 DOI: 10.1021/acs.inorgchem.8b01055] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous metal-organic frameworks (MOFs) are interesting materials owing to their interesting structural features and their many useful properties and applications. In particular, the structural features are greatly important to optimize the MOFs' porosities and so properties. Indeed, the MOFs' well-developed micropore and high surface area are the most important structural features, and as such, many practical applications of MOFs originate from these structural features. We herein demonstrate a strategy for improving the crystallinity of MOFs, and so increasing the porosity and surface area of poorly crystalline MOFs by making them in core-shell-type hybrids through the induced growth on the well-crystalline template. Although poorly crystalline versions of MOFs generate naturally in the absence of the well-crystalline template, well-crystalline versions of MOFs produce inductively in the presence of the well-crystalline template. In addition, the crystallinity enhancement of MOFs brings together the improvement in their porosities and surface areas. The surface areas and pore volumes of the well-crystalline versions of MOFs produced through the induced growth on the template are calculated based on this study, indicating that MOF surface areas increase by up to 7 times compared to the poorly crystalline versions.
Collapse
Affiliation(s)
- Hoyeon Ji
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749 , Korea
| | - Sujeong Lee
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749 , Korea
| | - Jeehyun Park
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749 , Korea
| | - Taeho Kim
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749 , Korea
| | - Sora Choi
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749 , Korea
| | - Moonhyun Oh
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 120-749 , Korea
| |
Collapse
|
50
|
Li A, Mu X, Li T, Wen H, Li W, Li Y, Wang B. Formation of porous Cu hydroxy double salt nanoflowers derived from metal-organic frameworks with efficient peroxidase-like activity for label-free detection of glucose. NANOSCALE 2018; 10:11948-11954. [PMID: 29901675 DOI: 10.1039/c8nr02832j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Currently, nanomaterials with peroxidase activity have become an important colorimetric tool for biomolecular detection. However, compared with natural enzymes, the efficiency of most nanozymes is still lower. Here, with a leaf-like metal-organic-framework-5 as both a precursor and a template and copper acetate as a second precursor, hierarchical Cu hydroxy double salt (HDS) nanoflowers have been prepared and used as a label-free glucose colorimetric detection platform. We have demonstrated a scalable and facile synthesis of hierarchical Cu HDS nanoflowers, and density functional theory (DFT) calculations confirmed that there exists a hydrogen bond between the terephthalate anions and the layer OH group. The composition of Cu hydroxyl double salt is [Cu4(OH)6][BDC]·2H2O. Importantly, for the first time, the as-prepared Cu HDSs were demonstrated as peroxidase mimics to catalyze the oxidation of the enzyme substrate, 3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which accompanies a color change from colorless to blue and followed classic Michaelis-Menten models. Based on these findings, a colorimetric method based on Cu HDSs that is highly sensitive and selective for the detection of glucose was developed, with a low detection limit of 0.5 μM. The clinical applicability of the sensor is also proven to be suitable for sensing glucose in blood, suggesting that Cu HDSs could be used in the construction of portable sensors for point-of-care diagnosis and on-site tests.
Collapse
Affiliation(s)
- Ali Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry Lanzhou University Gansu, Lanzhou, 730000, P.R. China.
| | | | | | | | | | | | | |
Collapse
|