1
|
Ran K, Zeng F, Jin L, Baumann S, Meulenberg WA, Mayer J. in situ observation of reversible phase transitions in Gd-doped ceria driven by electron beam irradiation. Nat Commun 2024; 15:8156. [PMID: 39289372 PMCID: PMC11408598 DOI: 10.1038/s41467-024-52386-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Ceria-based oxides are widely utilized in diverse energy-related applications, with attractive functionalities arising from a defective structure due to the formation of mobile oxygen vacancies (V O ⋅ ⋅ ). Notwithstanding its significance, behaviors of the defective structure andV O ⋅ ⋅ in response to external stimuli remain incompletely explored. Taking the Gd-doped ceria (Ce0.88Gd0.12O2-δ) as a model system and leveraging state-of-the-art transmission electron microscopy techniques, reversible phase transitions associated with massiveV O ⋅ ⋅ rearrangement are stimulated and visualized in situ with sub-Å resolution. Electron dose rate is identified as a pivotal factor in modulating the phase transition, and both theV O ⋅ ⋅ concentration and the orientation of the newly formed phase can be altered via electron beam. Our results provide indispensable insights for understanding and refining the microscopic pathways of phase transition as well as defect engineering, and could be applied to other similar functional oxides.
Collapse
Affiliation(s)
- Ke Ran
- Central Facility for Electron Microscopy GFE, RWTH Aachen University, Aachen, Germany.
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons ER-C, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Advanced Microelectronic Center Aachen, AMO GmbH, Aachen, Germany.
| | - Fanlin Zeng
- Institute of Energy and Climate Research IEK-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lei Jin
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons ER-C, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Stefan Baumann
- Institute of Energy and Climate Research IEK-1, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wilhelm A Meulenberg
- Institute of Energy and Climate Research IEK-1, Forschungszentrum Jülich GmbH, Jülich, Germany
- Faculty of Science and Technology, Inorganic Membranes, University of Twente, Enschede, AE, The Netherlands
| | - Joachim Mayer
- Central Facility for Electron Microscopy GFE, RWTH Aachen University, Aachen, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons ER-C, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
2
|
Lomholdt WB, Leth Larsen MH, Valencia CN, Schiøtz J, Hansen TW. Interpretability of high-resolution transmission electron microscopy images. Ultramicroscopy 2024; 263:113997. [PMID: 38820993 DOI: 10.1016/j.ultramic.2024.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
High-resolution electron microscopy is a well-suited tool for characterizing the nanoscale structure of materials. However, the interaction of the sample and the high-energy electrons of the beam can often have a detrimental impact on the sample structure. This effect can only be alleviated by decreasing the number of electrons to which the sample is exposed but will come at the cost of a decreased signal-to-noise ratio in the resulting image. Images with low signal to noise ratios are often challenging to interpret as parts of the sample with a low interaction with the electron beam are reproduced with very low contrast. Here we suggest simple measures as alternatives to the conventional signal-to-noise ratio and investigate how these can be used to predict the interpretability of the electron microscopy images. We test the models on a sample consisting of gold nanoparticles supported on a cerium dioxide substrate. The models are evaluated based on series of images acquired at varying electron dose.
Collapse
Affiliation(s)
| | | | | | - Jakob Schiøtz
- DTU Physics, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark
| | - Thomas Willum Hansen
- DTU Nanolab, Technical University of Denmark (DTU), DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Chee SW, Lunkenbein T, Schlögl R, Roldán Cuenya B. Operando Electron Microscopy of Catalysts: The Missing Cornerstone in Heterogeneous Catalysis Research? Chem Rev 2023; 123:13374-13418. [PMID: 37967448 PMCID: PMC10722467 DOI: 10.1021/acs.chemrev.3c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Heterogeneous catalysis in thermal gas-phase and electrochemical liquid-phase chemical conversion plays an important role in our modern energy landscape. However, many of the structural features that drive efficient chemical energy conversion are still unknown. These features are, in general, highly distinct on the local scale and lack translational symmetry, and thus, they are difficult to capture without the required spatial and temporal resolution. Correlating these structures to their function will, conversely, allow us to disentangle irrelevant and relevant features, explore the entanglement of different local structures, and provide us with the necessary understanding to tailor novel catalyst systems with improved productivity. This critical review provides a summary of the still immature field of operando electron microscopy for thermal gas-phase and electrochemical liquid-phase reactions. It focuses on the complexity of investigating catalytic reactions and catalysts, progress in the field, and analysis. The forthcoming advances are discussed in view of correlative techniques, artificial intelligence in analysis, and novel reactor designs.
Collapse
Affiliation(s)
- See Wee Chee
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department
of Inorganic Chemistry, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| | - Beatriz Roldán Cuenya
- Department
of Interface Science, Fritz-Haber Institute
of the Max-Planck Society, 14195 Berlin, Germany
| |
Collapse
|
4
|
Jeangros Q, Bugnet M, Epicier T, Frantz C, Diethelm S, Montinaro D, Tyukalova E, Pivak Y, Van Herle J, Hessler-Wyser A, Duchamp M. Operando analysis of a solid oxide fuel cell by environmental transmission electron microscopy. Nat Commun 2023; 14:7959. [PMID: 38042850 PMCID: PMC10693604 DOI: 10.1038/s41467-023-43683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/16/2023] [Indexed: 12/04/2023] Open
Abstract
Correlating the microstructure of an energy conversion device to its performance is often a complex exercise, notably in solid oxide fuel cell research. Solid oxide fuel cells combine multiple materials and interfaces that evolve in time due to high operating temperatures and reactive atmospheres. We demonstrate here that operando environmental transmission electron microscopy can identify structure-property links in such devices. By contacting a cathode-electrolyte-anode cell to a heating and biasing microelectromechanical system in a single-chamber configuration, a direct correlation is found between the environmental conditions (oxygen and hydrogen partial pressures, temperature), the cell open circuit voltage, and the microstructural evolution of the fuel cell, down to the atomic scale. The results shed important insights into the impact of the anode oxidation state and its morphology on the cell electrical properties.
Collapse
Affiliation(s)
- Q Jeangros
- Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland.
- Centre Suisse d'Electronique et de Microtechnique (CSEM), Jaquet-Droz 1, 2002, Neuchâtel, Switzerland.
| | - M Bugnet
- Univ Lyon, CNRS, INSA-Lyon, UCBL, MATEIS, UMR 5510, 69621, Villeurbanne, France
| | - T Epicier
- Univ Lyon, CNRS, INSA-Lyon, UCBL, MATEIS, UMR 5510, 69621, Villeurbanne, France
- Univ Lyon, UCBL, IRCELYON, UMR CNRS 5256, F-69626, Villeurbanne, France
| | - C Frantz
- Group of Energy Materials (GEM), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - S Diethelm
- Group of Energy Materials (GEM), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - D Montinaro
- SolydEra S.p.A., 38017, Mezzolombardo, Italy
| | - E Tyukalova
- Laboratory for in situ & operando Electron Nanoscopy, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 63737, Singapore, Singapore
| | - Y Pivak
- DENSsolutions, Informaticalaan 12, 2628 ZD, Delft, The Netherlands
| | - J Van Herle
- Group of Energy Materials (GEM), École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - A Hessler-Wyser
- Photovoltaics and Thin-Film Electronics Laboratory (PV-Lab), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, 2000, Neuchâtel, Switzerland
| | - M Duchamp
- Laboratory for in situ & operando Electron Nanoscopy, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 63737, Singapore, Singapore.
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Pang D, Li W, Zhang N, He H, Mao S, Chen Y, Cao L, Li C, Li A, Han X. Direct observation of oxygen vacancy formation and migration over ceria surface by in situ environmental transmission electron microscopy. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Lindner J, Ross U, Roddatis V, Jooss C. Langmuir analysis of electron beam induced plasma in environmental TEM. Ultramicroscopy 2023; 243:113629. [DOI: 10.1016/j.ultramic.2022.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
7
|
Zhang H, Wang W, Sun J, Zhong L, He L, Sun L. Surface-Condition-Dependent Deformation Mechanisms in Lead Nanocrystals. Research (Wash D C) 2022; 2022:9834636. [PMID: 36016690 PMCID: PMC9362692 DOI: 10.34133/2022/9834636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Serving as nanoelectrodes or frame units, small-volume metals may critically affect the performance and reliability of nanodevices, especially with feature sizes down to the nanometer scale. Small-volume metals usually behave extraordinarily in comparison with their bulk counterparts, but the knowledge of how their sizes and surfaces give rise to their extraordinary properties is currently insufficient. In this study, we investigate the influence of surface conditions on mechanical behaviors in nanometer-sized Pb crystals by performing in situ mechanical deformation tests inside an aberration-corrected transmission electron microscope (TEM). Pseudoelastic deformation and plastic deformation processes were observed at atomic precision during deformation of pristine and surface-oxidized Pb particles, respectively. It is found that in most of the pristine Pb particles, surface atom diffusion dominates and leads to a pseudoelastic deformation behavior. In stark contrast, in surface-passivated Pb particles where surface atom diffusion is largely inhibited, deformation proceeds via displacive plasticity including dislocations, stacking faults, and twinning, leading to dominant plastic deformation without any pseudoelasticity. This research directly reveals the dramatic impact of surface conditions on the deformation mechanisms and mechanical behaviors of metallic nanocrystals, which provides significant implications for property tuning of the critical components in advanced nanodevices.
Collapse
Affiliation(s)
- Hongtao Zhang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Wen Wang
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jun Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Li Zhong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Longbing He
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
- Center for Advanced Materials and Manufacture, Southeast University-Monash University Joint Research Institute, Suzhou 215123, China
| |
Collapse
|
8
|
Revealing synergetic structural activation of a CuAu surface during water-gas shift reaction. Proc Natl Acad Sci U S A 2022; 119:e2120088119. [PMID: 35648821 DOI: 10.1073/pnas.2120088119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance Atomic-level in situ environmental transmission electron microscopy observation of the dynamic activation process on a low-indexed CuAu surface under water-gas shift reaction (WGSR) condition has been revealed. The atomic-scale structural activation of a CuAu surface features a gas-dependent periodic surface restructuring and elemental ordering, explaining the "synergy effect" from the structural point of view. These real-time changes under relevant reactant gases and temperature are correlated with the reaction route of WGSR corroborated by density functional theory-based calculation and ab initio molecular dynamics simulation and can provide insights for atom-precision catalyst design.
Collapse
|
9
|
Manzorro R, Xu Y, Vincent JL, Rivera R, Matteson DS, Crozier PA. Exploring Blob Detection to Determine Atomic Column Positions and Intensities in Time-Resolved TEM Images with Ultra-Low Signal-to-Noise. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-14. [PMID: 35343415 DOI: 10.1017/s1431927622000356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynamics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic columns in materials undergoing structural dynamics. To address this challenge, we propose a noise-robust, processing approach based on blob detection, which has been previously established for identifying objects in images in the community of computer vision. In particular, a blob detection algorithm has been tailored to deal with noisy TEM image series from nanoparticle systems. In the presence of high noise content, our blob detection approach is demonstrated to outperform the results of other algorithms, enabling the determination of atomic column position and its intensity with a higher degree of precision.
Collapse
Affiliation(s)
- Ramon Manzorro
- School for the Engineering of Matter, Transport, and Energy, Arizona State University, Engineering G Wing #301, 501 E Tyler Mall, Tempe, AZ85287, USA
| | - Yuchen Xu
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Joshua L Vincent
- School for the Engineering of Matter, Transport, and Energy, Arizona State University, Engineering G Wing #301, 501 E Tyler Mall, Tempe, AZ85287, USA
| | - Roberto Rivera
- Department of Mathematical Sciences, University of Puerto Rico-Mayaguez, Mayaguez, Puerto Rico
| | - David S Matteson
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Peter A Crozier
- School for the Engineering of Matter, Transport, and Energy, Arizona State University, Engineering G Wing #301, 501 E Tyler Mall, Tempe, AZ85287, USA
| |
Collapse
|
10
|
Rodrigues Fiuza TE, Muniz da Silva M, Bettini J, Leite ER. Visualization of the Final Stage of Sintering in Nanoceramics with Atomic Resolution. NANO LETTERS 2022; 22:1978-1985. [PMID: 35225619 DOI: 10.1021/acs.nanolett.1c04708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The deep understanding of the sintering mechanism is pivotal to optimizing denser ceramics production. Although several models explain the sintering satisfactorily on the micrometric scale, the extrapolation for nanostructured systems is not trivial. Aiming to provide additional information about the particularities of the sintering at the nanoscale, we performed in situ experiments using high-resolution transmission electron microscopy (HRTEM). We studied the pore elimination process in a ZrO2 thin film and identified a high anisotropic pore elimination. Interestingly, there is a redistribution of the atoms from the rough surface in the solid-gas surface, followed by the atom attachment in a faceted surface. Finally, we found evidence of the pore acting as a pin, reducing the GB mobility. These findings certainly can contribute to enhance the kinetic models to describe the densification process of systems at the nanoscale.
Collapse
Affiliation(s)
| | - Marlon Muniz da Silva
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, 13083-970, Campinas, São Paulo, Brazil
- Faculdade de Química, Centro de Ciências Exatas, Ambientais e de Tecnologias (CEATEC), Pontifícia Universidade Católica de Campinas (PUCCamp), 13086-900, Campinas, São Paulo, Brazil
| | - Jefferson Bettini
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, 13083-970, Campinas, São Paulo, Brazil
| | - Edson Roberto Leite
- Laboratório Nacional de Nanotecnologia (LNNano), CNPEM, 13083-970, Campinas, São Paulo, Brazil
- Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| |
Collapse
|
11
|
Sudduth B, Yun D, Sun J, Wang Y. Facet-Dependent selectivity of CeO2 nanoparticles in 2-Propanol conversion. J Catal 2021. [DOI: 10.1016/j.jcat.2021.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Dong Z, Liu W, Zhang L, Wang S, Luo L. Structural Evolution of Cu/ZnO Catalysts during Water-Gas Shift Reaction: An In Situ Transmission Electron Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41707-41714. [PMID: 34427430 DOI: 10.1021/acsami.1c11839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported metal catalysts experience significant structural evolution during the activation process and reaction conditions, which is critical to achieve a desired active surface and interface enabling efficient catalytic processes. However, such dynamic structural information and related mechanistic understandings remain largely elusive owing to the limitation of real-time capturing dynamic information under reaction conditions. Here, using in situ environment transmission electron microscopy, we demonstrate the atomic-scale structural evolution of the model Cu/ZnO catalyst under relevant water-gas shift reaction (WGSR) conditions. Under a CO gas environment, Cu nanoparticles decompose into smaller Cu species and redistribute on ZnO supports with either the crystalline Cu2O or amorphous CuOx phase due to a strong CO-Cu interaction. In addition, we visualize various metal-support interactions between Cu and ZnO under reaction conditions, e.g., ZnO clusters precipitating on Cu nanoparticles, which are critical to understand active sites of Cu/ZnO as catalysts for WGSR. These in situ atomic-scale observations highlight the dynamic interplays between Cu and ZnO that can be extended to other supported metal catalysts.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Zhang Y, Zhao S, Feng J, Song S, Shi W, Wang D, Zhang H. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021. [DOI: 10.1016/j.chempr.2021.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Piccolo L. Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO 2 hydrogenation. Nat Commun 2021; 12:3884. [PMID: 34162865 PMCID: PMC8222268 DOI: 10.1038/s41467-021-24228-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements. Facile fabrication of high-entropy alloys (HEAs) nanoparticles (NPs) on conventional catalyst supports remains challenging. Here the authors show TiO2 is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA NPs with excellent activity and durability in CO2 hydrogenation.
Collapse
|
16
|
Tang M, Yuan W, Ou Y, Li G, You R, Li S, Yang H, Zhang Z, Wang Y. Recent Progresses on Structural Reconstruction of Nanosized Metal Catalysts via Controlled-Atmosphere Transmission Electron Microscopy: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Min Tang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Yang C, Capdevila-Cortada M, Dong C, Zhou Y, Wang J, Yu X, Nefedov A, Heißler S, López N, Shen W, Wöll C, Wang Y. Surface Refaceting Mechanism on Cubic Ceria. J Phys Chem Lett 2020; 11:7925-7931. [PMID: 32870002 DOI: 10.1021/acs.jpclett.0c02409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polar surfaces of solid oxides are intrinsically unstable and tend to reconstruct due to the diverging electrostatic energy and thus often exhibit unique physical and chemical properties. However, a quantitative description of the restructuring mechanism of these polar surfaces remains challenging. Here we provide an atomic-level picture of the refaceting process that governs the surface polarity compensation of cubic ceria nanoparticles based on the accurate reference data acquired from the well-defined model systems. The combined results from advanced infrared spectroscopy, atomic-resolved transmission electron microscopy, and density functional theory calculations identify a two-step scenario where an initial O-terminated (2 × 2) reconstruction is followed by a severe refaceting via massive mass transport at elevated temperatures to yield {111}-dominated nanopyramids. This significant surface restructuring promotes the redox properties of ceria nanocubes, which account for the enhanced catalytic activity for CO oxidation.
Collapse
Affiliation(s)
- Chengwu Yang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing 102206, China
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Marçal Capdevila-Cortada
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Chunyan Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junjun Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Xiaojuan Yu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Heißler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Kammert J, Moon J, Wu Z. A review of the interactions between ceria and H2 and the applications to selective hydrogenation of alkynes. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63509-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Daelman N, Hegner FS, Rellán-Piñeiro M, Capdevila-Cortada M, García-Muelas R, López N. Quasi-degenerate states and their dynamics in oxygen deficient reducible metal oxides. J Chem Phys 2020; 152:050901. [PMID: 32035446 DOI: 10.1063/1.5138484] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physical and chemical properties of oxides are defined by the presence of oxygen vacancies. Experimentally, non-defective structures are almost impossible to achieve due to synthetic constraints. Therefore, it is crucial to account for vacancies when evaluating the characteristics of these materials. The electronic structure of oxygen-depleted oxides deeply differs from that of the native forms, in particular, of reducible metal oxides, where excess electrons can localize in various distinct positions. In this perspective, we present recent developments from our group describing the complexity of these defective materials that highlight the need for an accurate description of (i) intrinsic vacancies in polar terminations, (ii) multiple geometries and complex electronic structures with several states attainable at typical working conditions, and (iii) the associated dynamics for both vacancy diffusion and the coexistence of more than one electronic structure. All these aspects widen our current understanding of defects in oxides and need to be adequately introduced in emerging high-throughput screening methodologies.
Collapse
Affiliation(s)
- Nathan Daelman
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Franziska Simone Hegner
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos Rellán-Piñeiro
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marçal Capdevila-Cortada
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, BIST, Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Lawrence EL, Levin BDA, Miller BK, Crozier PA. Approaches to Exploring Spatio-Temporal Surface Dynamics in Nanoparticles with In Situ Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:86-94. [PMID: 31858934 DOI: 10.1017/s1431927619015228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many nanoparticles in fields such as heterogeneous catalysis undergo surface structural fluctuations during chemical reactions, which may control functionality. These dynamic structural changes may be ideally investigated with time-resolved in situ electron microscopy. We have explored approaches for extracting quantitative information from large time-resolved image data sets with a low signal to noise recorded with a direct electron detector on an aberration-corrected transmission electron microscope. We focus on quantitatively characterizing beam-induced dynamic structural rearrangements taking place on the surface of CeO2 (ceria). A 2D Gaussian fitting procedure is employed to determine the position and occupancy of each atomic column in the nanoparticle with a temporal resolution of 2.5 ms and a spatial precision of 0.25 Å. Local rapid lattice expansions/contractions and atomic migration were revealed to occur on the (100) surface, whereas (111) surfaces were relatively stable throughout the experiment. The application of this methodology to other materials will provide new insights into the behavior of nanoparticle surface reconstructions that were previously inaccessible using other methods, which will have important consequences for the understanding of dynamic structure-property relationships.
Collapse
Affiliation(s)
- Ethan L Lawrence
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
| | - Barnaby D A Levin
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
| | | | - Peter A Crozier
- School for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
21
|
Levin BDA, Haiber D, Liu Q, Crozier PA. An Open-Cell Environmental Transmission Electron Microscopy Technique for In Situ Characterization of Samples in Aqueous Liquid Solutions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:134-138. [PMID: 31948500 DOI: 10.1017/s1431927619015320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The desire to image specimens in liquids has led to the development of open-cell and closed-cell techniques in transmission electron microscopy (TEM). The closed-cell approach is currently more common in TEM and has yielded new insights into a number of biological and materials processes in liquid environments. The open-cell approach, which requires an environmental TEM (ETEM), is technically challenging but may be advantageous in certain circumstances due to fewer restrictions on specimen and detector geometry. Here, we demonstrate a novel approach to open-cell liquid TEM, in which we use salt particles to facilitate the in situ formation of droplets of aqueous solution that envelope specimen particles coloaded with the salt. This is achieved by controlling sample temperature between 1 and 10°C and introducing water vapor to the ETEM chamber above the critical pressure for the formation of liquid water on the salt particles. Our use of in situ hydration enables specimens to be loaded into a microscope in a dry state using standard 3 mm TEM grids, allowing specimens to be prepared using trivial sample preparation techniques. Our future aim will be to combine this technique with an in situ light source to study photocorrosion in aqueous environments.
Collapse
Affiliation(s)
- Barnaby D A Levin
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Diane Haiber
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Qianlang Liu
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Peter A Crozier
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
22
|
Sung J, Choi BK, Kim B, Kim BH, Kim J, Lee D, Kim S, Kang K, Hyeon T, Park J. Redox-Sensitive Facet Dependency in Etching of Ceria Nanocrystals Directly Observed by Liquid Cell TEM. J Am Chem Soc 2019; 141:18395-18399. [PMID: 31644272 DOI: 10.1021/jacs.9b09508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Defining the redox activity of different surface facets of ceria nanocrystals is important for designing an efficient catalyst. Especially in liquid-phase reactions, where surface interactions are complicated, direct investigation in a native environment is required to understand the facet-dependent redox properties. Using liquid cell TEM, we herein observed the etching of ceria-based nanocrystals under the control of redox-governing factors. Direct nanoscale observation reveals facet-dependent etching kinetics, thus identifying the specific facet ({100} for reduction and {111} for oxidation) that governs the overall etching under different chemical conditions. Under each redox condition, the contribution of the predominant facet increases as the etching reactivity increases.
Collapse
Affiliation(s)
- Jongbaek Sung
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Back Kyu Choi
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byunghoon Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,Department of Materials Science and Engineering, and Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Joodeok Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Donghoon Lee
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Sungin Kim
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kisuk Kang
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,Department of Materials Science and Engineering, and Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea.,Institute of Engineering Research, College of Engineering , Seoul National University , Seoul 08826 , Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| | - Jungwon Park
- Center for Nanoparticle Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Process , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
23
|
In Situ Preparation of Pr1-xCaxMnO3 and La1-xSrxMnO3 Catalysts Surface for High-Resolution Environmental Transmission Electron Microscopy. Catalysts 2019. [DOI: 10.3390/catal9090751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study of changes in the atomic structure of a catalyst under chemical reaction conditions is extremely important for understanding the mechanism of their operation. For in situ environmental transmission electron microscopy (ETEM) studies, this requires preparation of electron transparent ultrathin TEM lamella without surface damage. Here, thin films of Pr1-xCaxMnO3 (PCMO, x = 0.1, 0.33) and La1-xSrxMnO3 (LSMO, x = 0.4) perovskites are used to demonstrate a cross-section specimen preparation method, comprised of two steps. The first step is based on optimized focused ion beam cutting procedures using a photoresist protection layer, finally being removed by plasma-etching. The second step is applicable for materials susceptible to surface amorphization, where in situ recrystallization back to perovskite structure is achieved by using electron beam driven chemistry in gases. This requires reduction of residual water vapor in a TEM column. Depending on the gas environment, long crystalline facets having different atomic terminations and Mn-valence state, can be prepared.
Collapse
|
24
|
Yu J, Li XY, Miao J, Yuan W, Zhou S, Zhu B, Gao Y, Yang H, Zhang Z, Wang Y. Atomic Mechanism in Layer-by-Layer Growth via Surface Reconstruction. NANO LETTERS 2019; 19:4205-4210. [PMID: 31145634 DOI: 10.1021/acs.nanolett.9b01934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layer-by-layer growth played a critical role in the fine design of novel materials and devices. Although it has been widely studied during materials synthesis, the atomic mechanism of the growth remains unclear due to the lack of direct observation at the atomic scale. Here, we report a new mode in layer-by-layer growth via surface reconstruction on MoO2 (011) by environmental transmission electron microscopy and density functional theory calculations. Our in situ environmental transmission electron microscopy results demonstrate that the layer-by-layer growth of MoO2 experiences two steps that occur in an oscillatory manner: (1) the formation of an atomic ledge by transforming a section of the reconstructed layer to the intrinsic surface layer and then (2) the spontaneous reconstruction of the newly formed intrinsic surface section. Thus, the surface reconstruction can be considered as an intermediated phase during the layer-by-layer growth of MoO2. A similar phenomenon was also observed in the MoO2 dissolution procedure.
Collapse
Affiliation(s)
| | - Xiao-Yan Li
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junjian Miao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | | | | | - Beien Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Yi Gao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | | | | | | |
Collapse
|
25
|
Polo-Garzon F, Bao Z, Zhang X, Huang W, Wu Z. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01097] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felipe Polo-Garzon
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xuanyu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Zili Wu
- Chemical Science Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
26
|
Ye L, Mahadi AH, Saengruengrit C, Qu J, Xu F, Fairclough SM, Young N, Ho PL, Shan J, Nguyen L, Tao FF, Tedsree K, Tsang SCE. Ceria Nanocrystals Supporting Pd for Formic Acid Electrocatalytic Oxidation: Prominent Polar Surface Metal Support Interactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00421] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Ye
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - A. Hanif Mahadi
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Chalathan Saengruengrit
- Department of Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131, Thailand
| | - Jin Qu
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Feng Xu
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Simon M. Fairclough
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Neil Young
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Ping-Luen Ho
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Junjun Shan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Luan Nguyen
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin F. Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Karaked Tedsree
- Department of Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131, Thailand
| | - S. C. Edman Tsang
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
27
|
Castanet U, Feral-Martin C, Demourgues A, Neale RL, Sayle DC, Caddeo F, Flitcroft JM, Caygill R, Pointon BJ, Molinari M, Majimel J. Controlling the {111}/{110} Surface Ratio of Cuboidal Ceria Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11384-11390. [PMID: 30843391 DOI: 10.1021/acsami.8b21667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to control the size and morphology is crucial in optimizing nanoceria catalytic activity as this is governed by the atomistic arrangement of species and structural features at the surfaces. Here, we show that cuboidal cerium oxide nanoparticles can be obtained via microwave-assisted hydrothermal synthesis in highly alkaline media. High-resolution transmission electron microscopy (HRTEM) revealed that the cube edges were truncated by CeO2{110} surfaces and the cube corners were truncated by CeO2{111} surfaces. When adjusting synthesis conditions by increasing NaOH concentration, the average particle size increased. Although this was accompanied by an increase of the cube faces, CeO2{100}, the cube edges, CeO2{110}, and cube corners, CeO2{111}, remained of constant size. Molecular dynamics (MD) was used to rationalize this behavior and revealed that energetically, the corners and edges cannot be atomically sharp, rather they are truncated by {111} and {110} surfaces, respectively, to stabilize the nanocube; both the experiment and simulation showed agreement regarding the minimum size of ∼1.6 nm associated with this truncation. Moreover, HRTEM and MD revealed {111}/{110} faceting of the {110} edges, which balances the surface energy associated with the exposed surfaces, which follows {111} > {110} > {100}, although only the {110} surface facets because of the ease of extracting oxygen from its surface and follows {111} > {100} > {110}. Finally, MD revealed that the {100} surfaces are "liquid-like" with a surface oxygen mobility 5 orders of magnitude higher than that on the {111} surfaces; this arises from the flexibility of the surface species network that can access many different surface arrangements because of very small energy differences. This finding has implications for understanding the surface chemistry of nanoceria and provides avenues to rationalize the design of catalytically active materials at the nanoscale.
Collapse
Affiliation(s)
- Uli Castanet
- CNRS, Univ. Bordeaux, ICMCB, UPR 9048 , 87 Avenue du Docteur Schweitzer , 33600 Pessac , France
| | | | - Alain Demourgues
- CNRS, Univ. Bordeaux, ICMCB, UPR 9048 , 87 Avenue du Docteur Schweitzer , 33600 Pessac , France
| | - Rachel L Neale
- School of Physical Science , University of Kent , Canterbury , Kent CT2 7NZ , U.K
| | - Dean C Sayle
- School of Physical Science , University of Kent , Canterbury , Kent CT2 7NZ , U.K
| | - Francesco Caddeo
- School of Physical Science , University of Kent , Canterbury , Kent CT2 7NZ , U.K
| | - Joseph M Flitcroft
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Robert Caygill
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Ben J Pointon
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Marco Molinari
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Jerome Majimel
- CNRS, Univ. Bordeaux, ICMCB, UPR 9048 , 87 Avenue du Docteur Schweitzer , 33600 Pessac , France
| |
Collapse
|
28
|
Chmielewski A, Meng J, Zhu B, Gao Y, Guesmi H, Prunier H, Alloyeau D, Wang G, Louis C, Delannoy L, Afanasiev P, Ricolleau C, Nelayah J. Reshaping Dynamics of Gold Nanoparticles under H 2 and O 2 at Atmospheric Pressure. ACS NANO 2019; 13:2024-2033. [PMID: 30620561 DOI: 10.1021/acsnano.8b08530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite intensive research efforts, the nature of the active sites for O2 and H2 adsorption/dissociation by supported gold nanoparticles (NPs) is still an unresolved issue in heterogeneous catalysis. This stems from the absence of a clear picture of the structural evolution of Au NPs at near reaction conditions, i. e., at high pressures and high temperatures. We hereby report real-space observations of the equilibrium shapes of titania-supported Au NPs under O2 and H2 at atmospheric pressure using gas transmission electron microscopy. In situ TEM observations show instantaneous changes in the equilibrium shape of Au NPs during cooling under O2 from 400 °C to room temperature. In comparison, no instant change in equilibrium shape is observed under a H2 environment. To interpret these experimental observations, the equilibrium shape of Au NPs under O2, atomic oxygen, and H2 is predicted using a multiscale structure reconstruction model. Excellent agreement between TEM observations and theoretical modeling of Au NPs under O2 provides strong evidence for the molecular adsorption of oxygen on the Au NPs below 120 °C on specific Au facets, which are identified in this work. In the case of H2, theoretical modeling predicts no interaction with gold atoms that explain their high morphological stability under this gas. This work provides atomic structural information for the fundamental understanding of the O2 and H2 adsorption properties of Au NPs under real working conditions and shows a way to identify the active sites of heterogeneous nanocatalysts under reaction conditions by monitoring the structure reconstruction.
Collapse
Affiliation(s)
- Adrian Chmielewski
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM , 240, Avenue du Professeur Emile Jeanbrau , 34090 Montpellier , France
| | - Beien Zhu
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Yi Gao
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Hazar Guesmi
- Institut Charles Gerhardt Montpellier, CNRS/ENSCM/UM , 240, Avenue du Professeur Emile Jeanbrau , 34090 Montpellier , France
| | - Hélène Prunier
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Damien Alloyeau
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Guillaume Wang
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Catherine Louis
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS , F-75252 Paris , France
| | - Laurent Delannoy
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS , F-75252 Paris , France
| | - Pavel Afanasiev
- Université de Lyon, Institut de Recherches sur la Catalyse et l'Environnement de Lyon - IRCELYON - UMR 5256, CNRS-UCB Lyon 1 , 2 Avenue Albert Einstein , 69626 Villeurebanne Cedex, France
| | - Christian Ricolleau
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| | - Jaysen Nelayah
- Université Paris Diderot , Sorbonne Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, 75013 Paris , France
| |
Collapse
|
29
|
Trenque I, Magnano GC, Bolzinger MA, Roiban L, Chaput F, Pitault I, Briançon S, Devers T, Masenelli-Varlot K, Bugnet M, Amans D. Shape-selective synthesis of nanoceria for degradation of paraoxon as a chemical warfare simulant. Phys Chem Chem Phys 2019; 21:5455-5465. [DOI: 10.1039/c9cp00179d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Repeated attacks using organophosphorus compounds, in military conflicts or terrorist acts, necessitate developing inexpensive and readily available decontamination systems. Nanosized cerium oxide is a suitable candidate when presents {111} facets.
Collapse
Affiliation(s)
| | | | | | | | - Frédéric Chaput
- Ecole Normale Supérieure de Lyon
- Laboratoire de Chimie
- CNRS UMR5182
- Lyon
- France
| | | | | | - Thierry Devers
- Univ Orléans
- IUT Chartres, Interfaces Confinement Mat & Nanostruct
- Chartres
- France
| | | | | | | |
Collapse
|
30
|
Johnston-Peck AC, Yang WCD, Winterstein JP, Sharma R, Herzing AA. In situ oxidation and reduction of cerium dioxide nanoparticles studied by scanning transmission electron microscopy. Micron 2018; 115:54-63. [PMID: 30212712 PMCID: PMC6392188 DOI: 10.1016/j.micron.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/29/2022]
Abstract
Cerium dioxide nanocubes and truncated octahedra were reduced and oxidized in the scanning transmission electron microscope. The reduction process was stimulated by the electron beam and oxidation was supported by background gases in the microscope environment. High-angle annular dark field imaging is sensitive to local lattice distortions that arise as oxygen vacancies are created and cerium cations reduce enabling high spatial resolution characterization of this process with temporal resolution on the order of seconds. Such measurements enable us to differentiate and infer that the observed behavior between the nanocubes and truncated octahedra may be due to the difference in crystallographic termination of surfaces. In situ measurements taken with different partial pressures of oxygen reveal the cerium oxidation state and the dose rate threshold for the onset of beam reduction are influenced by the environment. Increasing oxygen partial pressure reduces the Ce3+ content and decreases susceptibility to electron beam driven reduction.
Collapse
Affiliation(s)
- Aaron C Johnston-Peck
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Wei-Chang D Yang
- Center for Nanoscience and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; Maryland NanoCenter University of Maryland College Park, MD 20742, USA
| | - Jonathan P Winterstein
- Center for Nanoscience and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Renu Sharma
- Center for Nanoscience and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrew A Herzing
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|