1
|
Hao S, Suebka S, Su J. Single 5-nm quantum dot detection via microtoroid optical resonator photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:195. [PMID: 39160151 PMCID: PMC11333578 DOI: 10.1038/s41377-024-01536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024]
Abstract
Label-free detection techniques for single particles and molecules play an important role in basic science, disease diagnostics, and nanomaterial investigations. While fluorescence-based methods are tools for single molecule detection and imaging, they are limited by available molecular probes and photoblinking and photobleaching. Photothermal microscopy has emerged as a label-free imaging technique capable of detecting individual nanoabsorbers with high sensitivity. Whispering gallery mode (WGM) microresonators can confine light in a small volume for enhanced light-matter interaction and thus are a promising ultra-sensitive photothermal microscopy platform. Previously, microtoroid optical resonators were combined with photothermal microscopy to detect 250 nm long gold nanorods and 100 nm long polymers. Here, we combine microtoroids with photothermal microscopy to spatially detect single 5 nm diameter quantum dots (QDs) with a signal-to-noise ratio exceeding 104. Photothermal images were generated by point-by-point scanning of the pump laser. Single particle detection was confirmed for 18 nm QDs by high sensitivity fluorescence imaging and for 5 nm QDs via comparison with theory. Our system demonstrates the capability to detect a minimum heat dissipation of 0.75 pW. To achieve this, we integrated our microtoroid based photothermal microscopy setup with a low amplitude modulated pump laser and utilized the proportional-integral-derivative controller output as the photothermal signal source to reduce noise and enhance signal stability. The heat dissipation of these QDs is below that from single dye molecules. We anticipate that our work will have application in a wide variety of fields, including the biological sciences, nanotechnology, materials science, chemistry, and medicine.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Sartanee Suebka
- Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Toropov NA, Houghton MC, Yu D, Vollmer F. Thermo-Optoplasmonic Single-Molecule Sensing on Optical Microcavities. ACS NANO 2024; 18:17534-17546. [PMID: 38924515 PMCID: PMC11238588 DOI: 10.1021/acsnano.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Whispering-gallery-mode (WGM) resonators are powerful instruments for single-molecule sensing in biological and biochemical investigations. WGM sensors leveraged by plasmonic nanostructures, known as optoplasmonic sensors, provide sensitivity down to single atomic ions. In this article, we describe that the response of optoplasmonic sensors upon the attachment of single protein molecules strongly depends on the intensity of WGM. At low intensity, protein binding causes red shifts of WGM resonance wavelengths, known as the reactive sensing mechanism. By contrast, blue shifts are obtained at high intensities, which we explain as thermo-optoplasmonic (TOP) sensing, where molecules transform absorbed WGM radiation into heat. To support our conclusions, we experimentally investigated seven molecules and complexes; we observed blue shifts for dye molecules, amino acids, and anomalous absorption of enzymes in the near-infrared spectral region. As an example of an application, we propose a physical model of TOP sensing that can be used for the development of single-molecule absorption spectrometers.
Collapse
Affiliation(s)
- Nikita A Toropov
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, U.K
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, U.K
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China
| | - Matthew C Houghton
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, U.K
- Department of Life Sciences, University of Bath, Bath BA2 7AX, U.K
| | - Deshui Yu
- National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
| | - Frank Vollmer
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
3
|
Bourgeois MR, Pan F, Anyanwu CP, Nixon AG, Beutler EK, Dionne JA, Goldsmith RH, Masiello DJ. Spectroscopy in Nanoscopic Cavities: Models and Recent Experiments. Annu Rev Phys Chem 2024; 75:509-534. [PMID: 38941525 DOI: 10.1146/annurev-physchem-083122-125525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The ability of nanophotonic cavities to confine and store light to nanoscale dimensions has important implications for enhancing molecular, excitonic, phononic, and plasmonic optical responses. Spectroscopic signatures of processes that are ordinarily exceedingly weak such as pure absorption and Raman scattering have been brought to the single-particle limit of detection, while new emergent polaritonic states of optical matter have been realized through coupling material and photonic cavity degrees of freedom across a wide range of experimentally accessible interaction strengths. In this review, we discuss both optical and electron beam spectroscopies of cavity-coupled material systems in weak, strong, and ultrastrong coupling regimes, providing a theoretical basis for understanding the physics inherent to each while highlighting recent experimental advances and exciting future directions.
Collapse
Affiliation(s)
- Marc R Bourgeois
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Feng Pan
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - C Praise Anyanwu
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Austin G Nixon
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Elliot K Beutler
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
4
|
Needham LM, Saavedra C, Rasch JK, Sole-Barber D, Schweitzer BS, Fairhall AJ, Vollbrecht CH, Wan S, Podorova Y, Bergsten AJ, Mehlenbacher B, Zhang Z, Tenbrake L, Saimi J, Kneely LC, Kirkwood JS, Pfeifer H, Chapman ER, Goldsmith RH. Label-free detection and profiling of individual solution-phase molecules. Nature 2024; 629:1062-1068. [PMID: 38720082 DOI: 10.1038/s41586-024-07370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/02/2024] [Indexed: 05/21/2024]
Abstract
Most chemistry and biology occurs in solution, in which conformational dynamics and complexation underlie behaviour and function. Single-molecule techniques1 are uniquely suited to resolving molecular diversity and new label-free approaches are reshaping the power of single-molecule measurements. A label-free single-molecule method2-16 capable of revealing details of molecular conformation in solution17,18 would allow a new microscopic perspective of unprecedented detail. Here we use the enhanced light-molecule interactions in high-finesse fibre-based Fabry-Pérot microcavities19-21 to detect individual biomolecules as small as 1.2 kDa, a ten-amino-acid peptide, with signal-to-noise ratios (SNRs) >100, even as the molecules are unlabelled and freely diffusing in solution. Our method delivers 2D intensity and temporal profiles, enabling the distinction of subpopulations in mixed samples. Notably, we observe a linear relationship between passage time and molecular radius, unlocking the potential to gather crucial information about diffusion and solution-phase conformation. Furthermore, mixtures of biomolecule isomers of the same molecular weight and composition but different conformation can also be resolved. Detection is based on the creation of a new molecular velocity filter window and a dynamic thermal priming mechanism that make use of the interplay between optical and thermal dynamics22,23 and Pound-Drever-Hall (PDH) cavity locking24 to reveal molecular motion even while suppressing environmental noise. New in vitro ways of revealing molecular conformation, diversity and dynamics can find broad potential for applications in the life and chemical sciences.
Collapse
Affiliation(s)
- Lisa-Maria Needham
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- School of the Biological Sciences, University of Cambridge, Cambridge, UK
| | - Carlos Saavedra
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia K Rasch
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Sole-Barber
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Beau S Schweitzer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alex J Fairhall
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Cecilia H Vollbrecht
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry and Biochemistry, Kalamazoo College, Kalamazoo, MI, USA
| | - Sushu Wan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yulia Podorova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders J Bergsten
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Zhao Zhang
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Lukas Tenbrake
- Institut für Angewandte Physik, Universität Bonn, Bonn, Germany
| | - Jovanna Saimi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lucy C Kneely
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jackson S Kirkwood
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannes Pfeifer
- Institut für Angewandte Physik, Universität Bonn, Bonn, Germany
| | - Edwin R Chapman
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
5
|
West R, Kanellopulos K, Schmid S. Photothermal Microscopy and Spectroscopy with Nanomechanical Resonators. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:21915-21929. [PMID: 38024195 PMCID: PMC10659107 DOI: 10.1021/acs.jpcc.3c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
In nanomechanical photothermal absorption spectroscopy and microscopy, the measured substance becomes a part of the detection system itself, inducing a nanomechanical resonance frequency shift upon thermal relaxation. Suspended, nanometer-thin ceramic or 2D material resonators are innately highly sensitive thermal detectors of localized heat exchanges from substances on their surface or integrated into the resonator itself. Consequently, the combined nanoresonator-analyte system is a self-measuring spectrometer and microscope responding to a substance's transfer of heat over the entire spectrum for which it absorbs, according to the intensity it experiences. Limited by their own thermostatistical fluctuation phenomena, nanoresonators have demonstrated sufficient sensitivity for measuring trace analyte as well as single particles and molecules with incoherent light or focused and wide-field coherent light. They are versatile in their design, support various sampling methods-potentially including hydrated sample encapsulation-and hyphenation with other spectroscopic methods, and are capable in a wide range of applications including fingerprinting, separation science, and surface sciences.
Collapse
Affiliation(s)
- Robert
G. West
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Kostas Kanellopulos
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| |
Collapse
|
6
|
Kanellopulos K, West RG, Schmid S. Nanomechanical Photothermal Near Infrared Spectromicroscopy of Individual Nanorods. ACS PHOTONICS 2023; 10:3730-3739. [PMID: 37869554 PMCID: PMC10588552 DOI: 10.1021/acsphotonics.3c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 10/24/2023]
Abstract
Understanding light-matter interaction at the nanoscale requires probing the optical properties of matter at the individual nanoabsorber level. To this end, we developed a nanomechanical photothermal sensing platform that can be used as a full spectromicroscopy tool for single molecule and single particle analysis. As a demonstration, the absorption cross-section of individual gold nanorods is resolved from a spectroscopic and polarization standpoint. By exploiting the capabilities of nanomechanical photothermal spectromicroscopy, the longitudinal localized surface plasmon resonance in the NIR range is unraveled and quantitatively characterized. The polarization features of the transversal surface plasmon resonance in the VIS range are also analyzed. The measurements are compared with the finite element method, elucidating the role played by electron surface and bulk scattering in these plasmonic nanostructures, as well as the interaction between the nanoabsorber and the nanoresonator, ultimately resulting in absorption strength modulation. Finally, a comprehensive comparison is conducted, evaluating the signal-to-noise ratio of nanomechanical photothermal spectroscopy against other cutting-edge single molecule and particle spectroscopy techniques. This analysis highlights the remarkable potential of nanomechanical photothermal spectroscopy due to its exceptional sensitivity.
Collapse
Affiliation(s)
- Kostas Kanellopulos
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Robert G. West
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| |
Collapse
|
7
|
Needham LM, Saavedra C, Rasch JK, Sole-Barber D, Schweitzer BS, Fairhall AJ, Vollbrecht CH, Mehlenbacher B, Zhang Z, Tenbrake L, Pfeifer H, Chapman ER, Goldsmith RH. Label-free observation of individual solution phase molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534170. [PMID: 36993572 PMCID: PMC10055403 DOI: 10.1101/2023.03.24.534170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vast majority of chemistry and biology occurs in solution, and new label-free analytical techniques that can help resolve solution-phase complexity at the single-molecule level can provide new microscopic perspectives of unprecedented detail. Here, we use the increased light-molecule interactions in high-finesse fiber Fabry-Pérot microcavities to detect individual biomolecules as small as 1.2 kDa with signal-to-noise ratios >100, even as the molecules are freely diffusing in solution. Our method delivers 2D intensity and temporal profiles, enabling the distinction of sub-populations in mixed samples. Strikingly, we observe a linear relationship between passage time and molecular radius, unlocking the potential to gather crucial information about diffusion and solution-phase conformation. Furthermore, mixtures of biomolecule isomers of the same molecular weight can also be resolved. Detection is based on a novel molecular velocity filtering and dynamic thermal priming mechanism leveraging both photo-thermal bistability and Pound-Drever-Hall cavity locking. This technology holds broad potential for applications in life and chemical sciences and represents a major advancement in label-free in vitro single-molecule techniques.
Collapse
Affiliation(s)
- Lisa-Maria Needham
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Carlos Saavedra
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | - Julia K. Rasch
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | | | | | - Alex J. Fairhall
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | | | | | - Zhao Zhang
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin-Madison, WI, USA
| | - Lukas Tenbrake
- Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany
| | - Hannes Pfeifer
- Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, 53115 Bonn, Germany
| | - Edwin R. Chapman
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
8
|
Wang Y, Adhikari S, van der Meer H, Liu J, Orrit M. Thousand-Fold Enhancement of Photothermal Signals in Near-Critical CO 2. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3619-3625. [PMID: 36865992 PMCID: PMC9969513 DOI: 10.1021/acs.jpcc.2c08575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Photothermal (PT) microscopy has shown strong promise in imaging single absorbing nano-objects in soft matter and biological systems. PT imaging at ambient conditions usually requires a high laser power for a sensitive detection, which prevents application to light-sensitive nanoparticles. In a previous study of single gold nanoparticles, we showed that the photothermal signal can be enhanced more than 1000-fold in near-critical xenon compared to that in glycerol, a typical medium for PT detection. In this report, we show that carbon dioxide (CO2), a much cheaper gas than xenon, can enhance PT signals in a similar way. We confine near-critical CO2 in a thin capillary which easily withstands the high near-critical pressure (around 74 bar) and facilitates sample preparation. We also demonstrate enhancement of the magnetic circular dichroism signal of single magnetite nanoparticle clusters in supercritical CO2. We have performed COMSOL simulations to support and explain our experimental findings.
Collapse
Affiliation(s)
- Yonghui Wang
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Subhasis Adhikari
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Harmen van der Meer
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| | - Junyan Liu
- School
of Mechatronics Engineering, Harbin Institute
of Technology; Harbin 150001, P. R. China
| | - Michel Orrit
- Huygens-Kamerlingh
Onnes Laboratory, Leiden University; 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Pan F, Karlsson K, Nixon AG, Hogan LT, Ward JM, Smith KC, Masiello DJ, Nic Chormaic S, Goldsmith RH. Active Control of Plasmonic-Photonic Interactions in a Microbubble Cavity. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:20470-20479. [PMID: 36620077 PMCID: PMC9814823 DOI: 10.1021/acs.jpcc.2c05733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Active control of light-matter interactions using nanophotonic structures is critical for new modalities for solar energy production, cavity quantum electrodynamics (QED), and sensing, particularly at the single-particle level, where it underpins the creation of tunable nanophotonic networks. Coupled plasmonic-photonic systems show great promise toward these goals because of their subwavelength spatial confinement and ultrahigh-quality factors inherited from their respective components. Here, we present a microfluidic approach using microbubble whispering-gallery mode cavities to actively control plasmonic-photonic interactions at the single-particle level. By changing the solvent in the interior of the microbubble, control can be exerted on the interior dielectric constant and, thus, on the spatial overlap between the photonic and plasmonic modes. Qualitative agreement between experiment and simulation reveals the competing roles mode overlap and mode volume play in altering coupling strengths.
Collapse
Affiliation(s)
- Feng Pan
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin53706, United States
| | - Kristoffer Karlsson
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa904-0495, Japan
| | - Austin G. Nixon
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Levi T. Hogan
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin53706, United States
| | - Jonathan M. Ward
- Department
of Physics, University College Cork, CorkVGV5+95, Ireland
| | - Kevin C. Smith
- Department
of Physics, Yale University, New Haven, Connecticut06511, United States
| | - David J. Masiello
- Department
of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Síle Nic Chormaic
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa904-0495, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin53706, United States
| |
Collapse
|
10
|
Frigenti G, Cavigli L, Ratto F, Centi S, Murzina TV, Farnesi D, Pelli S, Soria S, Nunzi Conti G. Microbubble resonators for scattering-free absorption spectroscopy of nanoparticles. OPTICS EXPRESS 2021; 29:31130-31136. [PMID: 34615212 DOI: 10.1364/oe.434868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
We present a proof-of-concept experiment where the absorbance spectra of suspensions of plasmonic nanoparticles are accurately reconstructed through the photothermal conversion that they mediate in a microbubble resonator. This thermal detection produces spectra that are insensitive towards light scattering in the sample, as proved experimentally by comparing the spectra of acqueos gold nanorods suspensions in the presence or absence of milk powder. In addition, the microbubble system allows for the interrogation of small samples (below 40 nl) while using a low-intensity beam (around 20 µW) for their excitation. In perspective, this system could be implemented for the characterization of turbid biological fluids through their optical absorption, especially when considering that the microbubble resonator naturally interfaces to a microfluidic circuit and may easily fit within portable or on-chip devices.
Collapse
|
11
|
Adhikari S, Spaeth P, Kar A, Baaske MD, Khatua S, Orrit M. Photothermal Microscopy: Imaging the Optical Absorption of Single Nanoparticles and Single Molecules. ACS NANO 2020; 14:16414-16445. [PMID: 33216527 PMCID: PMC7760091 DOI: 10.1021/acsnano.0c07638] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photothermal (PT) signal arises from slight changes of the index of refraction in a sample due to absorption of a heating light beam. Refractive index changes are measured with a second probing beam, usually of a different color. In the past two decades, this all-optical detection method has reached the sensitivity of single particles and single molecules, which gave birth to original applications in material science and biology. PT microscopy enables shot-noise-limited detection of individual nanoabsorbers among strong scatterers and circumvents many of the limitations of fluorescence-based detection. This review describes the theoretical basis of PT microscopy, the methodological developments that improved its sensitivity toward single-nanoparticle and single-molecule imaging, and a vast number of applications to single-nanoparticle imaging and tracking in material science and in cellular biology.
Collapse
Affiliation(s)
- Subhasis Adhikari
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Patrick Spaeth
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Ashish Kar
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Martin Dieter Baaske
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Saumyakanti Khatua
- Chemistry
Discipline, Indian Institute of Technology
Gandhinagar, Palaj, Gujrat 382355, India
| | - Michel Orrit
- Huygens−Kamerlingh
Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
12
|
Abstract
Optical whispering-gallery mode (WGM) microresonators, confining resonant photons in a microscale volume for long periods of time, strongly enhance light-matter interactions, making them an ideal platform for photonic sensors. One of the features of WGM sensors is their capability to respond to environmental perturbations that influence the optical mode distribution. The exceptional sensitivity of WGM devices, coupled with the diversity in their structures and the ease of integration with existing infrastructures, such as conventional chip-based technologies, has catalyzed the development of WGM sensors for a broad range of analytes. WGM sensors have been developed for multiplexed detection of clinically relevant biomolecules while also being adapted for the analysis of single-protein interactions. They have been used for the detection of materials in different phases and forms, including gases, liquids, and chemicals. Furthermore, WGM sensors have been used for a wide variety of field-based sensing applications, including electric field, magnetic field, force, pressure, and temperature. WGM sensors hold great potential for applications in life and environmental sciences. They are expected to meet the ever-increasing demand in sensor networks, the Internet of Things, and real-time health monitoring. Here we review the mechanisms, structures, parameters, and recent advances of WGM microsensors and discuss the future of this exciting research field.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Abraham J. Qavi
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Steven H. Huang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Lan Yang
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
13
|
Roch LM, Saikin SK, Häse F, Friederich P, Goldsmith RH, León S, Aspuru-Guzik A. From Absorption Spectra to Charge Transfer in Nanoaggregates of Oligomers with Machine Learning. ACS NANO 2020; 14:6589-6598. [PMID: 32338888 DOI: 10.1021/acsnano.0c00384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fast and inexpensive characterization of materials properties is a key element to discover novel functional materials. In this work, we suggest an approach employing three classes of Bayesian machine learning (ML) models to correlate electronic absorption spectra of nanoaggregates with the strength of intermolecular electronic couplings in organic conducting and semiconducting materials. As a specific model system, we consider poly(3,4-ethylenedioxythiophene) (PEDOT) polystyrene sulfonate, a cornerstone material for organic electronic applications, and so analyze the couplings between charged dimers of closely packed PEDOT oligomers that are at the heart of the material's unrivaled conductivity. We demonstrate that ML algorithms can identify correlations between the coupling strengths and the electronic absorption spectra. We also show that ML models can be trained to be transferable across a broad range of spectral resolutions and that the electronic couplings can be predicted from the simulated spectra with an 88% accuracy when ML models are used as classifiers. Although the ML models employed in this study were trained on data generated by a multiscale computational workflow, they were able to leverage experimental data.
Collapse
Affiliation(s)
- Loïc M Roch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- ChemOS Sàrl, Lausanne, VD 1006, Switzerland
| | - Semion K Saikin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Kebotix, Inc., Cambridge, Massachusetts 02139, United States
| | - Florian Häse
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Pascal Friederich
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Salvador León
- Department of Industrial Chemical Engineering and Environment, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Alán Aspuru-Guzik
- Vector Institute for Artificial Intelligence, Toronto, ON M5S 1M1, Canada
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
14
|
Pan F, Smith KC, Nguyen HL, Knapper KA, Masiello DJ, Goldsmith RH. Elucidating Energy Pathways through Simultaneous Measurement of Absorption and Transmission in a Coupled Plasmonic-Photonic Cavity. NANO LETTERS 2020; 20:50-58. [PMID: 31424952 DOI: 10.1021/acs.nanolett.9b02796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control of light-matter interactions is central to numerous advances in quantum communication, information, and sensing. The relative ease with which interactions can be tailored in coupled plasmonic-photonic systems makes them ideal candidates for investigation. To exert control over the interaction between photons and plasmons, it is essential to identify the underlying energy pathways which influence the system's dynamics and determine the critical system parameters, such as the coupling strength and dissipation rates. However, in coupled systems which dissipate energy through multiple competing pathways, simultaneously resolving all parameters from a single experiment is challenging as typical observables such as absorption and scattering each probe only a particular path. In this work, we simultaneously measure both photothermal absorption and two-sided optical transmission in a coupled plasmonic-photonic resonator consisting of plasmonic gold nanorods deposited on a toroidal whispering-gallery-mode optical microresonator. We then present an analytical model which predicts and explains the distinct line shapes observed and quantifies the contribution of each system parameter. By combining this model with experiment, we extract all system parameters with a dynamic range spanning 9 orders of magnitude. Our combined approach provides a full description of plasmonic-photonic energy dynamics in a weakly coupled optical system, a necessary step for future applications that rely on tunability of dissipation and coupling.
Collapse
Affiliation(s)
- Feng Pan
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| | - Kevin C Smith
- Department of Physics , University of Washington , Seattle , Washington 98195-1560 , United States
| | - Hoang L Nguyen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| | - Kassandra A Knapper
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| | - David J Masiello
- Department of Chemistry , University of Washington , Seattle , Washington 98195-1700 , United States
| | - Randall H Goldsmith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706-1322 , United States
| |
Collapse
|
15
|
Hogan LT, Horak EH, Ward JM, Knapper KA, Nic Chormaic S, Goldsmith RH. Toward Real-Time Monitoring and Control of Single Nanoparticle Properties with a Microbubble Resonator Spectrometer. ACS NANO 2019; 13:12743-12757. [PMID: 31614083 PMCID: PMC6887843 DOI: 10.1021/acsnano.9b04702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Optical microresonators have widespread application at the frontiers of nanophotonic technology, driven by their ability to confine light to the nanoscale and enhance light-matter interactions. Microresonators form the heart of a recently developed method for single-particle photothermal absorption spectroscopy, whereby the microresonators act as microscale thermometers to detect the heat dissipated by optically pumped, nonluminescent nanoscopic targets. However, translation of this technology to chemically dynamic systems requires a platform that is mechanically stable, solution compatible, and visibly transparent. We report microbubble absorption spectrometers as a versatile platform that meets these requirements. Microbubbles integrate a two-port microfluidic device within a whispering gallery mode microresonator, allowing for the facile exchange of chemical reagents within the resonator's interior while maintaining a solution-free environment on its exterior. We first leverage these qualities to investigate the photoactivated etching of single gold nanorods by ferric chloride, providing a method for rapid acquisition of spatial and morphological information about nanoparticles as they undergo chemical reactions. We then demonstrate the ability to control nanorod orientation within a microbubble through optically exerted torque, a promising route toward the construction of hybrid photonic-plasmonic systems. Critically, the reported platform advances microresonator spectrometer technology by permitting room-temperature, aqueous experimental conditions, which may be used for time-resolved single-particle experiments on non-emissive, nanoscale analytes engaged in catalytically and biologically relevant chemical dynamics.
Collapse
Affiliation(s)
- Levi T. Hogan
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erik H. Horak
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M. Ward
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kassandra A. Knapper
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Síle Nic Chormaic
- Light-Matter
Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Randall H. Goldsmith
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- E-mail:
| |
Collapse
|
16
|
Subramanian S, Wu HY, Constant T, Xavier J, Vollmer F. Label-Free Optical Single-Molecule Micro- and Nanosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801246. [PMID: 30073717 DOI: 10.1002/adma.201801246] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Indexed: 05/12/2023]
Abstract
Label-free optical sensor systems have emerged that exhibit extraordinary sensitivity for detecting physical, chemical, and biological entities at the micro/nanoscale. Particularly exciting is the detection and analysis of molecules, on miniature optical devices that have many possible applications in health, environment, and security. These micro- and nanosensors have now reached a sensitivity level that allows for the detection and analysis of even single molecules. Their small size enables an exceedingly high sensitivity, and the application of quantum optical measurement techniques can allow the classical limits of detection to be approached or surpassed. The new class of label-free micro- and nanosensors allows dynamic processes at the single-molecule level to be observed directly with light. By virtue of their small interaction length, these micro- and nanosensors probe light-matter interactions over a dynamic range often inaccessible by other optical techniques. For researchers entering this rapidly advancing field of single-molecule micro- and nanosensors, there is an urgent need for a timely review that covers the most recent developments and that identifies the most exciting opportunities. The focus here is to provide a summary of the recent techniques that have either demonstrated label-free single-molecule detection or claim single-molecule sensitivity.
Collapse
Affiliation(s)
- Sivaraman Subramanian
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Hsin-Yu Wu
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Tom Constant
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Jolly Xavier
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| | - Frank Vollmer
- Living Systems Institute, Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|
17
|
Drumming up single-molecule beats. Proc Natl Acad Sci U S A 2018; 115:11115-11117. [PMID: 30337481 DOI: 10.1073/pnas.1815764115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Hinton DA, Ng JD, Sun J, Lee S, Saikin SK, Logsdon J, White DS, Marquard AN, Cavell AC, Krasecki VK, Knapper KA, Lupo KM, Wasielewski MR, Aspuru-Guzik A, Biteen JS, Gopalan P, Goldsmith RH. Mapping Forbidden Emission to Structure in Self-Assembled Organic Nanoparticles. J Am Chem Soc 2018; 140:15827-15841. [DOI: 10.1021/jacs.8b09149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel A. Hinton
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - James D. Ng
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Jian Sun
- Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Stephen Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Semion K. Saikin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Institute of Physics, Kazan Federal University, Kazan 420008, Russian Federation
| | - Jenna Logsdon
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - David S. White
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
- Department of Neuroscience, University of Wisconsin−Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Angela N. Marquard
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Andrew C. Cavell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Veronica K. Krasecki
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Kassandra A. Knapper
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Katherine M. Lupo
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Alán Aspuru-Guzik
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5S 1M1, Canada
- Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario M5S 1M1, Canada
| | - Julie S. Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Padma Gopalan
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
- Department of Materials Science and Engineering, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Randall H. Goldsmith
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53705, United States
| |
Collapse
|
19
|
Knapper KA, Pan F, Rea MT, Horak EH, Rogers JD, Goldsmith RH. Single-particle photothermal imaging via inverted excitation through high-Q all-glass toroidal microresonators. OPTICS EXPRESS 2018; 26:25020-25030. [PMID: 30469610 DOI: 10.1364/oe.26.025020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Whispering-gallery mode (WGM) microresonators have recently been employed as platforms for label-free single-molecule and single-particle detection, imaging, and spectroscopy. However, innovations in device geometry and integration are needed to make WGM microresonators more versatile for biological and chemical applications. Particularly, thick device substrates, originating from wafer-scale fabrication processing, prevent convenient optical interrogation. In this work, we fabricate all-glass toroidal microresonators on a coverslip thickness (~170 μm) substrate, enabling excitation delivery through the sample, simplifying optical integration. Further, we demonstrate the application of this new geometry for single-particle photothermal imaging. Finally, we discover and develop simulations to explain a non-trivial astigmatism in the point spread function (PSF) arising from the curvature of the resonator.
Collapse
|