1
|
Rana A, Liao CT, Iacocca E, Zou J, Pham M, Lu X, Subramanian EEC, Lo YH, Ryan SA, Bevis CS, Karl RM, Glaid AJ, Rable J, Mahale P, Hirst J, Ostler T, Liu W, O'Leary CM, Yu YS, Bustillo K, Ohldag H, Shapiro DA, Yazdi S, Mallouk TE, Osher SJ, Kapteyn HC, Crespi VH, Badding JV, Tserkovnyak Y, Murnane MM, Miao J. Three-dimensional topological magnetic monopoles and their interactions in a ferromagnetic meta-lattice. NATURE NANOTECHNOLOGY 2023; 18:227-232. [PMID: 36690739 DOI: 10.1038/s41565-022-01311-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/13/2022] [Indexed: 05/21/2023]
Abstract
Topological magnetic monopoles (TMMs), also known as hedgehogs or Bloch points, are three-dimensional (3D) non-local spin textures that are robust to thermal and quantum fluctuations due to the topology protection1-4. Although TMMs have been observed in skyrmion lattices1,5, spinor Bose-Einstein condensates6,7, chiral magnets8, vortex rings2,9 and vortex cores10, it has been difficult to directly measure the 3D magnetization vector field of TMMs and probe their interactions at the nanoscale. Here we report the creation of 138 stable TMMs at the specific sites of a ferromagnetic meta-lattice at room temperature. We further develop soft X-ray vector ptycho-tomography to determine the magnetization vector and emergent magnetic field of the TMMs with a 3D spatial resolution of 10 nm. This spatial resolution is comparable to the magnetic exchange length of transition metals11, enabling us to probe monopole-monopole interactions. We find that the TMM and anti-TMM pairs are separated by 18.3 ± 1.6 nm, while the TMM and TMM, and anti-TMM and anti-TMM pairs are stabilized at comparatively longer distances of 36.1 ± 2.4 nm and 43.1 ± 2.0 nm, respectively. We also observe virtual TMMs created by magnetic voids in the meta-lattice. This work demonstrates that ferromagnetic meta-lattices could be used as a platform to create and investigate the interactions and dynamics of TMMs. Furthermore, we expect that soft X-ray vector ptycho-tomography can be broadly applied to quantitatively image 3D vector fields in magnetic and anisotropic materials at the nanoscale.
Collapse
Affiliation(s)
- Arjun Rana
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Chen-Ting Liao
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Ezio Iacocca
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, UK
- Center for Magnetism and Magnetic Nanostructures, University of Colorado, Colorado Springs, CO, USA
| | - Ji Zou
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Minh Pham
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xingyuan Lu
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- School of Physical Science and Technology, Soochow University, Suzhou, China
| | - Emma-Elizabeth Cating Subramanian
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Yuan Hung Lo
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Sinéad A Ryan
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Charles S Bevis
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Robert M Karl
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Andrew J Glaid
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Jeffrey Rable
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Pratibha Mahale
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Hirst
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
| | - Thomas Ostler
- Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield, UK
- Department of Physics and Mathematics, University of Hull, Hull, UK
| | - William Liu
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Colum M O'Leary
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
| | - Young-Sang Yu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Karen Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hendrik Ohldag
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Shapiro
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, USA
| | - Thomas E Mallouk
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley J Osher
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Henry C Kapteyn
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Vincent H Crespi
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - John V Badding
- Departments of Chemistry, Physics, Materials Science and Engineering and Materials Research Institute, Penn State University, University Park, PA, USA
| | - Yaroslav Tserkovnyak
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret M Murnane
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA
- JILA and Department of Physics, University of Colorado and NIST, Boulder, CO, USA
| | - Jianwei Miao
- Department of Physics & Astronomy and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- STROBE Science and Technology Center, University of Colorado and NIST, Boulder, CO, USA.
| |
Collapse
|
2
|
Knobloch JL, McBennett B, Bevis CS, Yazdi S, Frazer TD, Adak A, Nelson EE, Hernández-Charpak JN, Cheng HY, Grede AJ, Mahale P, Nova NN, Giebink NC, Mallouk TE, Badding JV, Kapteyn HC, Abad B, Murnane MM. Structural and Elastic Properties of Empty-Pore Metalattices Extracted via Nondestructive Coherent Extreme UV Scatterometry and Electron Tomography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41316-41327. [PMID: 36054507 DOI: 10.1021/acsami.2c09360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductor metalattices consisting of a linked network of three-dimensional nanostructures with periodicities on a length scale <100 nm can enable tailored functional properties due to their complex nanostructuring. For example, by controlling both the porosity and pore size, thermal transport in these phononic metalattices can be tuned, making them promising candidates for efficient thermoelectrics or thermal rectifiers. Thus, the ability to characterize the porosity, and other physical properties, of metalattices is critical but challenging, due to their nanoscale structure and thickness. To date, only metalattices with high porosities, close to the close-packing fraction of hard spheres, have been studied experimentally. Here, we characterize the porosity, thickness, and elastic properties of a low-porosity, empty-pore silicon metalattice film (∼500 nm thickness) with periodic spherical pores (∼tens of nanometers), for the first time. We use laser-driven nanoscale surface acoustic waves probed by extreme ultraviolet scatterometry to nondestructively measure the acoustic dispersion in these thin silicon metalattice layers. By comparing the data to finite element models of the metalattice sample, we can extract Young's modulus and porosity. Moreover, by controlling the acoustic wave penetration depth, we can also determine the metalattice layer thickness and verify the substrate properties. Additionally, we utilize electron tomography images of the metalattice to verify the geometry and validate the porosity extracted from scatterometry. These advanced characterization techniques are critical for informed and iterative fabrication of energy-efficient devices based on nanostructured metamaterials.
Collapse
Affiliation(s)
- Joshua L Knobloch
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Brendan McBennett
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Charles S Bevis
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute and the Materials Science & Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Travis D Frazer
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Amitava Adak
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Emma E Nelson
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Jorge N Hernández-Charpak
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Hiu Y Cheng
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pratibha Mahale
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nabila Nabi Nova
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John V Badding
- Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Henry C Kapteyn
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
- KMLabs Incorporated, 4775 Walnut Street, Building 102, Boulder, Colorado 80301, United States
| | - Begoña Abad
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Margaret M Murnane
- Department of Physics, JILA, and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Mahale P, Lee B, Cheng HY, Segad M, Mallouk TE. Small-Angle X-ray Scattering Analysis of Colloidal Crystals and Replica Materials Made from l-Arginine-Stabilized Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9398-9407. [PMID: 35134294 DOI: 10.1021/acsami.1c19193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colloidal crystals made from sub-100 nm silica nanoparticles have provided a versatile platform for the template-assisted synthesis of three-dimensionally interconnected semiconducting, metallic, and magnetic replicas. However, the detailed structure of these materials has not yet been characterized. In this study, we investigated the structures of colloidal crystalline films and germanium replicas by scanning electron microscopy and small angle X-ray scattering. The structures of colloidal crystals made by evaporative assembly depends on the size of l-arginine-capped silica nanoparticles. Particles smaller than ∼31 nm diameter assemble into non-close-packed arrangements (bcc) whereas particles larger than 31 nm assemble into random close-packed structures with disordered hexagonal phase. Polycrystalline films of these materials retain their structures and long-range order upon infiltration at high temperature and pressure, and the structure is preserved in Ge replicas. The shear force during deposition and dispersity of silica nanoparticles contributes to the size-based variation in the structure and to the size of crystal domains in the colloidal crystal films.
Collapse
Affiliation(s)
- Pratibha Mahale
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Lemont, Illinois 60439, United States
| | - Hiu Yan Cheng
- Department of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| | - Mo Segad
- Materials Research Institute, Pennsylvania State University, University Park, State College, Pennsylvania 16801, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Han JH, Shneidman AV, Kim DY, Nicolas NJ, Hoeven JES, Aizenberg M, Aizenberg J. Highly Ordered Inverse Opal Structures Synthesized from Shape‐Controlled Nanocrystal Building Blocks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jae Hyo Han
- Department of Chemistry and Chemical Biology & John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Anna V. Shneidman
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Do Yoon Kim
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Natalie J. Nicolas
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Jessi E. S. Hoeven
- Department of Chemistry and Chemical Biology & John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology & John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St. Cambridge MA 02138 USA
| |
Collapse
|
5
|
Han JH, Shneidman AV, Kim DY, Nicolas NJ, van der Hoeven JES, Aizenberg M, Aizenberg J. Highly Ordered Inverse Opal Structures Synthesized from Shape-Controlled Nanocrystal Building Blocks. Angew Chem Int Ed Engl 2021; 61:e202111048. [PMID: 34606677 DOI: 10.1002/anie.202111048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Indexed: 01/29/2023]
Abstract
Three-dimensional ordered porous materials known as inverse opal films (IOFs) were synthesized using nanocrystals with precisely defined morphologies. Comprehensive theoretical and experimental studies of the volume fraction ratio and electrostatic interactions between nanocrystals and polystyrene templating particles enabled the formation of highly ordered crack-free photonic structures. The synthetic strategy was first demonstrated using titanium dioxide (TiO2 ) nanocrystals of different shapes and then generalized to assemble nanocrystals of other functional materials, such as indium tin oxide and zinc-doped ferrite. Tunable photocatalytic activity of the TiO2 IOFs, modulated through the choice of the shape of TiO2 nanocrystals in conjunction with selecting desired macroscopic features of the IOF, was further explored. In particular, enhanced activity is observed for crack-free, highly ordered IOFs whose photonic properties can improve light absorption via the slow light effect. This study opens new opportunities in designing multi-length-scale porous nanoarchitectures having enhanced performance in a variety of applications.
Collapse
Affiliation(s)
- Jae Hyo Han
- Department of Chemistry and Chemical Biology &, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA, 02138, USA
| | - Do Yoon Kim
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA, 02138, USA
| | - Natalie J Nicolas
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA, 02138, USA
| | - Jessi E S van der Hoeven
- Department of Chemistry and Chemical Biology &, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| | - Michael Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA, 02138, USA
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology &, John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Mahale P, Moradifar P, Cheng HY, Nova NN, Grede AJ, Lee B, De Jesús LR, Wetherington M, Giebink NC, Badding JV, Alem N, Mallouk TE. Oxide-Free Three-Dimensional Germanium/Silicon Core-Shell Metalattice Made by High-Pressure Confined Chemical Vapor Deposition. ACS NANO 2020; 14:12810-12818. [PMID: 32941002 DOI: 10.1021/acsnano.0c03559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metalattices are crystalline arrays of uniform particles in which the period of the crystal is close to some characteristic physical length scale of the material. Here, we explore the synthesis and properties of a germanium metalattice in which the ∼70 nm periodicity of a silica colloidal crystal template is close to the ∼24 nm Bohr exciton radius of the nanocrystalline Ge replica. The problem of Ge surface oxidation can be significant when exploring quantum confinement effects or designing electronically coupled nanostructures because of the high surface area to volume ratio at the nanoscale. To eliminate surface oxidation, we developed a core-shell synthesis in which the Ge metalattice is protected by an oxide-free Si interfacial layer, and we explore its properties by transmission electron microscopy (TEM), Raman spectroscopy, and electron energy loss spectroscopy (EELS). The interstices of a colloidal crystal film grown from 69 nm diameter spherical silica particles were filled with polycrystalline Ge by high-pressure confined chemical vapor deposition (HPcCVD) from GeH4. After the SiO2 template was etched away with aqueous HF, the Ge replica was uniformly coated with an amorphous Si shell by HPcCVD as confirmed by TEM-EDS (energy-dispersive X-ray spectroscopy) and Raman spectroscopy. Formation of the shell prevents oxidation of the Ge core within the detection limit of XPS. The electronic properties of the core-shell structure were studied by accessing the Ge 3d edge onset using STEM-EELS. A blue shift in the edge onset with decreasing size of Ge sites in the metalattices suggests quantum confinement of the Ge core. The degree of quantum confinement of the Ge core depends on the void sizes in the template, which is tunable by using silica particles of varying size. The edge onset also shows a shift to higher energy near the shell in comparison with the Ge core. This shift along with the observation of Ge-Si vibrational modes in the Raman spectrum indicate interdiffusion of Ge and Si. Both the size of the voids in the template and core-shell interdiffusion of Si and Ge can in principle be tuned to modify the electronic properties of the Ge metalattice.
Collapse
Affiliation(s)
- Pratibha Mahale
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Parivash Moradifar
- Department of Material Science and Engineering & Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hiu Yan Cheng
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nabila Nabi Nova
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Luis R De Jesús
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Maxwell Wetherington
- Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John V Badding
- Department of Material Science and Engineering & Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nasim Alem
- Department of Material Science and Engineering & Material Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Abad B, Knobloch JL, Frazer TD, Hernández-Charpak JN, Cheng HY, Grede AJ, Giebink NC, Mallouk TE, Mahale P, Nova NN, Tomaschke AA, Ferguson VL, Crespi VH, Gopalan V, Kapteyn HC, Badding JV, Murnane MM. Nondestructive Measurements of the Mechanical and Structural Properties of Nanostructured Metalattices. NANO LETTERS 2020; 20:3306-3312. [PMID: 32227973 DOI: 10.1021/acs.nanolett.0c00167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm. By monitoring the time-dependent diffraction of short wavelength light from laser-excited acoustic waves in the metalattices, we extract their acoustic dispersion, Young's modulus, filling fraction, and thicknesses. Our measurements are in excellent agreement with macroscopic predictions and potentially destructive techniques such as nanoindentation and scanning electron microscopy, with increased accuracy over larger areas. This is interesting because the transport properties of these metalattices do not obey bulk predictions. Finally, this approach is the only way to validate the filling fraction of metalattices over macroscopic areas. These combined capabilities can enable accurate synthesis of nanoenhanced materials.
Collapse
Affiliation(s)
- Begoña Abad
- Department of Physics, JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Joshua L Knobloch
- Department of Physics, JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Travis D Frazer
- Department of Physics, JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Jorge N Hernández-Charpak
- Department of Physics, JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - Hiu Y Cheng
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pratibha Mahale
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nabila N Nova
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andrew A Tomaschke
- Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Virginia L Ferguson
- Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Vincent H Crespi
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Venkatraman Gopalan
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Henry C Kapteyn
- Department of Physics, JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| | - John V Badding
- Department of Chemistry, Biochemistry and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Margaret M Murnane
- Department of Physics, JILA and STROBE NSF Science & Technology Center, University of Colorado and NIST, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Chen W, Talreja D, Eichfeld D, Mahale P, Nova NN, Cheng HY, Russell JL, Yu SY, Poilvert N, Mahan G, Mohney SE, Crespi VH, Mallouk TE, Badding JV, Foley B, Gopalan V, Dabo I. Achieving Minimal Heat Conductivity by Ballistic Confinement in Phononic Metalattices. ACS NANO 2020; 14:4235-4243. [PMID: 32223186 DOI: 10.1021/acsnano.9b09487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the thermal conductivity of semiconductors is of practical interest in optimizing the performance of thermoelectric and phononic devices. The insertion of inclusions of nanometer size in a semiconductor is an effective means of achieving such control; it has been proposed that the thermal conductivity of silicon could be reduced to 1 W/m/K using this approach and that a minimum in the heat conductivity would be reached for some optimal size of the inclusions. Yet the experimental verification of this design rule has been limited. In this work, we address this question by studying the thermal properties of silicon metalattices that consist of a periodic distribution of spherical inclusions with radii from 7 to 30 nm, embedded into silicon. Experimental measurements confirm that the thermal conductivity of silicon metalattices is as low as 1 W/m/K for silica inclusions and that this value can be further reduced to 0.16 W/m/K for silicon metalattices with empty pores. A detailed model of ballistic phonon transport suggests that this thermal conductivity is close to the lowest achievable by tuning the radius and spacing of the periodic inhomogeneities. This study is a significant step in elucidating the scaling laws that dictate ballistic heat transport at the nanoscale in silicon and other semiconductors.
Collapse
Affiliation(s)
- Weinan Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Disha Talreja
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Devon Eichfeld
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Pratibha Mahale
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nabila Nabi Nova
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hiu Y Cheng
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jennifer L Russell
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shih-Ying Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicolas Poilvert
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gerald Mahan
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Suzanne E Mohney
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vincent H Crespi
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Thomas E Mallouk
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John V Badding
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brian Foley
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ismaila Dabo
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|