1
|
Brückner DB, Broedersz CP. Learning dynamical models of single and collective cell migration: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:056601. [PMID: 38518358 DOI: 10.1088/1361-6633/ad36d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Single and collective cell migration are fundamental processes critical for physiological phenomena ranging from embryonic development and immune response to wound healing and cancer metastasis. To understand cell migration from a physical perspective, a broad variety of models for the underlying physical mechanisms that govern cell motility have been developed. A key challenge in the development of such models is how to connect them to experimental observations, which often exhibit complex stochastic behaviours. In this review, we discuss recent advances in data-driven theoretical approaches that directly connect with experimental data to infer dynamical models of stochastic cell migration. Leveraging advances in nanofabrication, image analysis, and tracking technology, experimental studies now provide unprecedented large datasets on cellular dynamics. In parallel, theoretical efforts have been directed towards integrating such datasets into physical models from the single cell to the tissue scale with the aim of conceptualising the emergent behaviour of cells. We first review how this inference problem has been addressed in both freely migrating and confined cells. Next, we discuss why these dynamics typically take the form of underdamped stochastic equations of motion, and how such equations can be inferred from data. We then review applications of data-driven inference and machine learning approaches to heterogeneity in cell behaviour, subcellular degrees of freedom, and to the collective dynamics of multicellular systems. Across these applications, we emphasise how data-driven methods can be integrated with physical active matter models of migrating cells, and help reveal how underlying molecular mechanisms control cell behaviour. Together, these data-driven approaches are a promising avenue for building physical models of cell migration directly from experimental data, and for providing conceptual links between different length-scales of description.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Chase P Broedersz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilian-University Munich, Theresienstr. 37, D-80333 Munich, Germany
| |
Collapse
|
2
|
Chala N, Zhang X, Zambelli T, Zhang Z, Schneider T, Panozzo D, Poulikakos D, Ferrari A. 4D Force Detection of Cell Adhesion and Contractility. NANO LETTERS 2023; 23:2467-2475. [PMID: 36975035 PMCID: PMC10103301 DOI: 10.1021/acs.nanolett.2c03733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Mechanical signals establish two-way communication between mammalian cells and their environment. Cells contacting a surface exert forces via contractility and transmit them at the areas of focal adhesions. External stimuli, such as compressive and pulling forces, typically affect the adhesion-free cell surface. Here, we demonstrate the collaborative employment of Fluidic Force Microscopy and confocal Traction Force Microscopy supported by the Cellogram solver to enable a powerful integrated force probing approach, where controlled vertical forces are applied to the free surface of individual cells, while the concomitant deformations are used to map their transmission to the substrate. Force transmission across human cells is measured with unprecedented temporal and spatial resolution, enabling the investigation of the cellular mechanisms involved in the adaptation, or maladaptation, to external mechanical stimuli. Altogether, the system enables facile and precise force interrogation of individual cells, with the capacity to perform population-based analysis.
Collapse
Affiliation(s)
- Nafsika Chala
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Xinyu Zhang
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Tomaso Zambelli
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Ziyi Zhang
- Courant
Institute of Mathematical Sciences, New
York University, 5th Avenue 60, New York, New York 10011, United
States
| | - Teseo Schneider
- Department
of Computer Science, University of Victoria, 3800 Finnerty Road, Engineering
& Computer Science Building, Victoria, BC V8P 5C2, Canada
| | - Daniele Panozzo
- Courant
Institute of Mathematical Sciences, New
York University, 5th Avenue 60, New York, New York 10011, United
States
| | - Dimos Poulikakos
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Aldo Ferrari
- Laboratory
of Thermodynamics in Emerging Technologies, Department of Mechanical
and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
- Experimental
Continuum Mechanics, EMPA, Swiss Federal
Laboratories for Material Science and Technologies, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Institute
for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
3
|
Rong R, Li H, Dong X, Hu L, Shi X, Du Y, Deng H, Sa Y. Silk fibroin-chitosan aerogel reinforced by nanofibers for enhanced osteogenic differentiation in MC3T3-E1 cells. Int J Biol Macromol 2023; 233:123501. [PMID: 36736519 DOI: 10.1016/j.ijbiomac.2023.123501] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Proper bone scaffolds should be biocompatible, mechanically robust and porous for cell migration. Here, pure silk fibroin (SF)- chitosan (CS) aerogel scaffolds reinforced with different amount of SF nanofibers (SF-CS/NF1%, SF-CS/NF2% and SF-CS/NF3%) are prepared for bone regeneration. Surface morphology and composition were analyzed to ensure successful integration of each component. Incorporating 3 % nanofibers endowed the aerogels with a resistance to 3.5 times the compressive stress of the pure SF-CS aerogels. The benefits of nanofibers were also confirmed by the high porosity of 72.3 ± 1.3 %, the regulated pore size and the high-water uptake ratio of 1770.4 ± 156.8 %. Enhanced cell viability of the aerogel scaffolds was verified with Cell Counting Kit-8 (CCK-8) assays, and confocal microscopy and scanning electron microscopy (SEM) images were taken to assess the cell migration and distribution. The cell differentiation on the aerogel scaffolds was evaluated with enzyme-linked immunosorbent assay (ELISA). Significantly higher level of Collagen type I (Col-I), osteocalcin (OCN), osteopontin (OPN), and alkaline phosphatase (ALP) expression was observed on SF-CS/NF3% aerogels. This biocompatible nanofiber-reinforced aerogel scaffold facilitates osteogenic differentiation by rougher surface, enhanced mechanical strength and well-regulated pores. Thus, as-prepared scaffolds may be further applied in bone regeneration field.
Collapse
Affiliation(s)
- Rong Rong
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hao Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Liqun Hu
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xiaowen Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Yumin Du
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
| | - Yue Sa
- Department of Prosthodontics, The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
4
|
Hrynevich A, Li Y, Cedillo-Servin G, Malda J, Castilho M. (Bio)fabrication of microfluidic devices and organs-on-a-chip. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
5
|
Safara FMR, Melo HPM, Telo da Gama MM, Araújo NAM. Model for active particles confined in a two-state micropattern. SOFT MATTER 2022; 18:5699-5705. [PMID: 35876272 DOI: 10.1039/d2sm00616b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We propose a model, based on active Brownian particles, for the dynamics of cells confined in a two-state micropattern, composed of two rectangular boxes connected by a bridge, and investigate the transition statistics. A transition between boxes occurs when the active particle crosses the center of the bridge, and the time between subsequent transitions is the dwell time. By assuming that the rotational diffusion time τ is a function of the position, some experimental observations are qualitatively recovered as, for example, the shape of the survival function. τ controls the transition from a ballistic regime at short time scales to a diffusive regime at long time scales, with an effective diffusion coefficient proportional to τ. For small values of τ, the dwell time is determined by the characteristic diffusion timescale which is constant for very low values of τ, when the rotational diffusion is much faster than the translational one and decays with τ for intermediate values of τ. For large values of τ, the interaction with the walls dominates and the particle stays mostly at the corners of the boxes increasing the dwell time. We find that there is an optimal τ for which the dwell time is minimal and its value can be tuned by changing the geometry of the pattern.
Collapse
Affiliation(s)
- Francisco M R Safara
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Hygor P M Melo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
6
|
Ryma M, Tylek T, Liebscher J, Blum C, Fernandez R, Böhm C, Kastenmüller W, Gasteiger G, Groll J. Translation of Collagen Ultrastructure to Biomaterial Fabrication for Material-Independent but Highly Efficient Topographic Immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101228. [PMID: 34240485 PMCID: PMC11468812 DOI: 10.1002/adma.202101228] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Supplement-free induction of cellular differentiation and polarization solely through the topography of materials is an auspicious strategy but has so far significantly lagged behind the efficiency and intensity of media-supplementation-based protocols. Consistent with the idea that 3D structural motifs in the extracellular matrix possess immunomodulatory capacity as part of the natural healing process, it is found in this study that human-monocyte-derived macrophages show a strong M2a-like prohealing polarization when cultured on type I rat-tail collagen fibers but not on collagen I films. Therefore, it is hypothesized that highly aligned nanofibrils also of synthetic polymers, if packed into larger bundles in 3D topographical biomimetic similarity to native collagen I, would induce a localized macrophage polarization. For the automated fabrication of such bundles in a 3D printing manner, the strategy of "melt electrofibrillation" is pioneered by the integration of flow-directed polymer phase separation into melt electrowriting and subsequent selective dissolution of the matrix polymer postprocessing. This process yields nanofiber bundles with a remarkable structural similarity to native collagen I fibers, particularly for medical-grade poly(ε-caprolactone). These biomimetic fibrillar structures indeed induce a pronounced elongation of human-monocyte-derived macrophages and unprecedentedly trigger their M2-like polarization similar in efficacy as interleukin-4 treatment.
Collapse
Affiliation(s)
- Matthias Ryma
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| | - Tina Tylek
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| | - Julia Liebscher
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| | - Carina Blum
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| | - Robin Fernandez
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| | - Christoph Böhm
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems ImmunologyMax Planck Research Group at the Julius‐Maximilians‐Universität Würzburg97080WürzburgGermany
| | - Georg Gasteiger
- Würzburg Institute of Systems ImmunologyMax Planck Research Group at the Julius‐Maximilians‐Universität Würzburg97080WürzburgGermany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteJulius‐Maximilians‐Universität Würzburg97070WürzburgGermany
| |
Collapse
|
7
|
A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior. Sci Rep 2020; 10:6370. [PMID: 32286364 PMCID: PMC7156444 DOI: 10.1038/s41598-020-62986-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young's modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.
Collapse
|
8
|
Brückner DB, Fink A, Rädler JO, Broedersz CP. Disentangling the behavioural variability of confined cell migration. J R Soc Interface 2020; 17:20190689. [PMCID: PMC7061702 DOI: 10.1098/rsif.2019.0689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2024] Open
Abstract
Cell-to-cell variability is inherent to numerous biological processes, including cell migration. Quantifying and characterizing the variability of migrating cells is challenging, as it requires monitoring many cells for long time windows under identical conditions. Here, we observe the migration of single human breast cancer cells (MDA-MB-231) in confining two-state micropatterns. To describe the stochastic dynamics of this confined migration, we employ a dynamical systems approach. We identify statistics to measure the behavioural variance of the migration, which significantly exceeds that predicted by a population-averaged stochastic model. This additional variance can be explained by the combination of an ‘ageing’ process and population heterogeneity. To quantify population heterogeneity, we decompose the cells into subpopulations of slow and fast cells, revealing the presence of distinct classes of dynamical systems describing the migration, ranging from bistable to limit cycle behaviour. Our findings highlight the breadth of migration behaviours present in cell populations.
Collapse
Affiliation(s)
- David B. Brückner
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| | - Alexandra Fink
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| | - Chase P. Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität, München, Bayern, Germany
| |
Collapse
|
9
|
Leal-Egaña A, Balland M, Boccaccini AR. Re-engineering Artificial Neoplastic Milieus: Taking Lessons from Mechano- and Topobiology. Trends Biotechnol 2020; 38:142-153. [DOI: 10.1016/j.tibtech.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
|
10
|
Sgarminato V, Tonda-Turo C, Ciardelli G. Reviewing recently developed technologies to direct cell activity through the control of pore size: From the macro- to the nanoscale. J Biomed Mater Res B Appl Biomater 2019; 108:1176-1185. [PMID: 31429201 DOI: 10.1002/jbm.b.34467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022]
Abstract
Scaffold pore size plays a fundamental role in the regeneration of new tissue since it has been shown to direct cell activity in situ. It is well known that cellular response changes in relation with pores diameter. Consequently, researchers developed efficient approaches to realize scaffolds with controllable macro-, micro-, and nanoporous architecture. In this context, new strategies aiming at the manufacturing of scaffolds with multiscale pore networks have emerged, in the attempt to mimic the complex hierarchical structures found in living systems. In this review, we aim at providing an overview of the fabrication methods currently adopted to realize scaffolds with controlled, multisized pores highlighting their specific influence on cellular activity.
Collapse
Affiliation(s)
- Viola Sgarminato
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Chiara Tonda-Turo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,POLITO BIOMedLAB, Politecnico di Torino, Turin, Italy.,Department for Materials and Devices of the National Research Council, Institute for the Chemical and Physical Processes (CNR-IPCF UOS), Pisa, Italy
| |
Collapse
|
11
|
Green BJ, Nguyen V, Atenafu E, Weeber P, Duong BTV, Thiagalingam P, Labib M, Mohamadi RM, Hansen AR, Joshua AM, Kelley SO. Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking. Anal Chem 2019; 91:9348-9355. [DOI: 10.1021/acs.analchem.9b01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Vivian Nguyen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Eshetu Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Phillip Weeber
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Bill T. V. Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Punithan Thiagalingam
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Reza M. Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Aaron R. Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
- Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Panagiotakopoulou M, Lendenmann T, Pramotton FM, Giampietro C, Stefopoulos G, Poulikakos D, Ferrari A. Cell cycle-dependent force transmission in cancer cells. Mol Biol Cell 2018; 29:2528-2539. [PMID: 30113874 PMCID: PMC6254576 DOI: 10.1091/mbc.e17-12-0726] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 12/28/2022] Open
Abstract
The generation of traction forces and their transmission to the extracellular environment supports the disseminative migration of cells from a primary tumor. In cancer cells, the periodic variation of nuclear stiffness during the cell cycle provides a functional link between efficient translocation and proliferation. However, the mechanical framework completing this picture remains unexplored. Here, the Fucci2 reporter was expressed in various human epithelial cancer cells to resolve their cell cycle phase transition. The corresponding tractions were captured by a recently developed reference-free confocal traction-force microscopy platform. The combined approach was conducive to the analysis of phase-dependent force variation at the level of individual integrin contacts. Detected forces were invariably higher in the G1 and early S phases than in the ensuing late S/G2, and locally colocalized with high levels of paxillin phosphorylation. Perturbation of paxillin phosphorylation at focal adhesions, obtained through the biochemical inhibition of focal adhesion kinase (FAK) or the transfection of nonphosphorylatable or phosphomimetic paxillin mutants, significantly diminished the force transmitted to the substrate. These data demonstrate a reproducible modulation of force transmission during the cell cycle progression of cancer cells, instrumental to their invasion of dense environments. In addition, they delineate a model in which paxillin phosphorylation supports the mechanical maturation of adhesions relaying forces to the substrate.
Collapse
Affiliation(s)
- Magdalini Panagiotakopoulou
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Tobias Lendenmann
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Francesca Michela Pramotton
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092 Zürich, Switzerland
- Institute for Mechanical Systems, ETH Zurich, CH-8092 Zürich, Switzerland
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|