1
|
Zhu T, Dong J, Liu H, Wang Y. Controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes for ultrafast alcohol recovery. MATERIALS HORIZONS 2023; 10:3024-3033. [PMID: 37194492 DOI: 10.1039/d3mh00250k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of efficient separation membranes limits the development of bio-alcohol purification via a pervaporation process. In this work, novel controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes are prepared from self-synthesized supramolecular elastomers for alcohol recovery. Different from the conventional covalently-bonded PDMS membranes, the hydrogen-bonding content and therefore the crosslinking degree in the as-synthesized PDMS membranes can be exactly regulated, by the suitable molecular design of the supramolecular elastomers. The effects of hydrogen-bonding content on the flexibility of the polymer chains and the separation performance of the resultant supramolecular membranes are investigated in detail. In comparison with the state-of-the-art polymeric membranes, the novel controllable hydrogen-bonded supramolecular PDMS membrane exhibits ultrahigh fluxes for ethanol (4.1 kg m-2 h-1) and n-butanol (7.7 kg m-2 h-1) recovery from 5 wt% alcohol aqueous solutions at 80 °C, with comparable separation factors. The designed supramolecular elastomer is therefore believed to provide valuable insights into the design of next-generation separation membrane materials for molecular separations.
Collapse
Affiliation(s)
- Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Jiayu Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Huan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Tian Y, Hu C, An M, He X, Wang H, Yi C. Fabrication and Characterization of Carbon Nanotube Filled PDMS Hybrid Membranes for Enhanced Ethanol Recovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12294-12304. [PMID: 36890695 DOI: 10.1021/acsami.2c20553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ethanol separation via the pervaporation process has shown growing application potential in solvent recovery and the bioethanol industry. In the continuous pervaporation process, polymeric membranes such as hydrophobic polydimethylsiloxane (PDMS) have been developed to enrich/separate ethanol from dilute aqueous solutions. However, its practical application remains largely limited due to the relatively low separation efficiency, especially in selectivity. In view of this, hydrophobic carbon nanotube (CNT) filled PDMS mixed matrix membranes (MMMs) aimed at high-efficiency ethanol recovery were fabricated in this work. The filler K-MWCNTs was prepared by functionalizing MWCNT-NH2 with epoxy-containing silane coupling agent (KH560) to improve the affinity between fillers and PDMS matrix. With K-MWCNT loading increased from 1 wt % to 10 wt %, membranes showed higher surface roughness and water contact angle was improved from 115° to 130°. The swelling degree of K-MWCNT/PDMS MMMs (2 wt %) in water were also reduced from 10 wt % to 2.5 wt %. Pervaporation performance for K-MWCNT/PDMS MMMs under varied feed concentrations and temperatures were evaluated. The results supported that the K-MWCNT/PDMS MMMs at 2 wt % K-MWCNT loading showed the optimum separation performance (compared with pure PDMS membranes), with the separation factor improved from 9.1 to 10.4, and the permeate flux increased by 50% (40-60 °C, at 6 wt % feed ethanol concentration). This work provides a promising method for preparing a PDMS composite with both high permeate flux and selectivity, which showed great potential for bioethanol production and alcohol separation in industry.
Collapse
Affiliation(s)
- Yuhong Tian
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Changfeng Hu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mingzhe An
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Xinping He
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hong Wang
- Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin 644000, China
| | - Chunhai Yi
- Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Mao H, Zhou S, Li M, Wang R, Ma Z, Xiao H, Xue A, Zhao Y, Peng W, Chen C. PVDF ultrafiltration membrane with enhanced mechanical and filtration performance by hydrophilic pH-response nanofibers modification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
4
|
Gupta I, Gupta O. Recent Advancements in the Recovery and Reuse of Organic Solvents Using Novel Nanomaterial-Based Membranes for Renewable Energy Applications. MEMBRANES 2023; 13:membranes13010108. [PMID: 36676915 PMCID: PMC9862370 DOI: 10.3390/membranes13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 05/12/2023]
Abstract
The energy crisis in the world is increasing rapidly owing to the shortage of fossil fuel reserves. Climate change and an increase in global warming necessitates a change in focus from petroleum-based fuels to renewable fuels such as biofuels. The remodeling of existing separation processes using various nanomaterials is of a growing interest to industrial separation methods. Recently, the design of membrane technologies has been the most focused research area concerning fermentation broth to enhance performance efficiency, while recovering those byproducts to be used as value added fuels. Specifically, the use of novel nano material membranes, which brings about a selective permeation of the byproducts, such as organic solvent, from the fermentation broth, positively affects the fermentation kinetics by eliminating the issue of product inhibition. In this review, which and how membrane-based technologies using novel materials can improve the separation performance of organic solvents is considered. In particular, technical approaches suggested in previous studies are discussed with the goal of emphasizing benefits and problems faced in order to direct research towards an optimized membrane separation performance for renewable fuel production on a commercial scale.
Collapse
Affiliation(s)
- Indrani Gupta
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Oindrila Gupta
- Vertex Pharmaceuticals Inc., Boston, MA 02210, USA
- Correspondence: ; Tel.: +1-201-467-1138
| |
Collapse
|
5
|
Pang S, Si Z, Li G, Wu H, Cui Y, Zhang C, Ren C, Yang S, Pang S, Qin P. A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Si Z, Wu H, Qin P, Van der Bruggen B. Polydimethylsiloxane based membranes for biofuels pervaporation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Butanol recovery from synthetic fermentation broth by vacuum distillation in a rotating packed bed. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wang Y, Xue T, Si Z, Liu C, Yang S, Li G, Zhuang Y, Qin P. Visible-light-induced ultrafast preparation of PDMS membrane for the pervaporative separation of furfural. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
10
|
Yusrizal AA, Abdullah TK, Ali ES, Ahmad S, Ahmad Zubir S. Enhanced thermal and tensile behaviour of MWCNT reinforced palm oil polyol based shape memory polyurethane. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Zhang X, Tong Z, Liu C, Ye L, Zhou Y, Meng Q, Zhang G, Gao C. Functionalized MOF-Derived Nanoporous Carbon as Compatible Nanofiller to Fabricate Defect-Free PDMS-Based Mixed Matrix Pervaporation Membranes. ACS OMEGA 2022; 7:15786-15794. [PMID: 35571851 PMCID: PMC9097190 DOI: 10.1021/acsomega.2c00881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic framework (MOF)-based polydimethylsiloxane mixed matrix membranes applied for alcohol recovery with high permeability and selectivity are drawing more and more attention. However, the design and fabrication of high-quality and stable MOF-based mixed matrix membrane for pervaporation are still a big challenge. Herein, PDMS functionalized MOF-derived nanoporous carbon (P-ZNC) was first explored as compatible nanofiller to mutually blend with polydimethylsiloxane on PVDF substrate to fabricate defect-free mixed matrix membranes via dip-coating and thermal cross-linkng. Induced by UV illumination, hydrophobic modification of MOF-derived nanoporous carbon was successfully realized under mild conditions within one step, simplifying the operation step. By using this facile strategy, we can not only solve the existing problem of agglomeration, but also covalently cross-link MOF derivative with polymeric matrix and effectively eliminate the interface defect between polymer and nanoparticles without any extra steps. The method also gives a good level of generality for the synthesis of versatile stable nanoporous MOF-derived carbon-based mixed matrix membranes on various supports. The prepared PDMS/P-ZNC with commendable structures possessed excellent separation performance in low concentration n-butanol recovery and had a good balance between permeance, selectivity, and stability.
Collapse
Affiliation(s)
- Xu Zhang
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zhaowei Tong
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Chao Liu
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Lei Ye
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yuwei Zhou
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Qin Meng
- College
of Chemical and Biological Engineering, and State Key Laboratory of
Chemical Engineering, Zhejiang University, Yugu Road 38#, 310027 Hangzhou, China
| | - Guoliang Zhang
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Congjie Gao
- Center
for Membrane and Water Science & Technology, Institute of Oceanic
and Environmental Chemical Engineering, State Key Lab Breeding Base
of Green Chemical Synthesis Technology, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
12
|
Zhang X, Liu F, Xu L, Xu Z, Shen C, Zhang G, Meng Q, Gao C. Heterostructured ZIF-8/lamellar talc composites incorporated polydimethylsiloxane membrane with enhanced separation performance for butanol recovery. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Pan Y, Guo Y, Liu J, Zhu H, Chen G, Liu Q, Liu G, Jin W. PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Jiangying Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu Road (S) Nanjing 211816 P. R. China
| |
Collapse
|
15
|
Zhan X, Zhao X, Gao Z, Ge R, Lu J, Wang L, Li J. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Pan Y, Guo Y, Liu J, Zhu H, Chen G, Liu Q, Liu G, Jin W. PDMS with Tunable Side Group Mobility and Its Highly Permeable Membrane for Removal of Aromatic Compounds. Angew Chem Int Ed Engl 2021; 61:e202111810. [PMID: 34854181 DOI: 10.1002/anie.202111810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Polydimethylsiloxane (PDMS), as the benchmark of organophilic membrane materials, still faces challenges for removal of aromatic compounds due to the undesirable transport channels. In this work, we propose to reconstruct the PDMS conformation with tunable side group mobility by introducing phenyl as rigid molecular spacer to relieve steric hindrance of large-sized aromatic molecules; meanwhile, polymer segments are loosely stacked to provide additional degrees of freedom as increasing the permeant size. Moreover, the reconstructed PDMS is engineered into the composite membrane with prevention of condensation of aromatic compounds in the substrate pores. The resulting thin-film composite membrane achieved one order of magnitude higher flux (11.8 kg m-2 h-1 ) with an equivalent separation factor (12.3) compared with the state-of-the-art membranes for aromatic removal. The permeant-customized membrane molecular and microstructure designing strategy opens a new avenue to develop membranes for specific separation targets.
Collapse
Affiliation(s)
- Yang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Jiangying Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Haipeng Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Quan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, P. R. China
| |
Collapse
|
17
|
Vahdatifar S, Ali Khodadadi A, Mortazavi Y, Greenlee LF. Functionalized open-ended vertically aligned carbon nanotube composite membranes with high salt rejection and enhanced slip flow for desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Mao H, Li SH, Xu LH, Wang S, Liu WM, Lv MY, Lv J, Zhao ZP. Zeolitic imidazolate frameworks in mixed matrix membranes for boosting phenol/water separation: Crystal evolution and preferential orientation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Liu C, Xue T, Yang Y, Ouyang J, Chen H, Yang S, Li G, Cai D, Si Z, Li S, Qin P. Effect of crosslinker 3-methacryloxypropylmethyldimethoxysilane on UV-crosslinked PDMS-PTFPMS block copolymer membranes for ethanol pervaporation. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Li J, Liao H, Sun Y, Li R, Zhu B, Zhong Z, Yao Z. Fabrication of MWCNTs/PDMS mixed matrix membranes for recovery of volatile aromatic compounds from brewed black tea. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Chen Z, Dong X, Chen Z. n-decane diffusion in carbon nanotubes with vibration. J Chem Phys 2021; 154:074505. [PMID: 33607913 DOI: 10.1063/5.0038869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Carbon nanotubes (CNTs) have a wide range of applications in nanotechnology engineering. This research aims to quantify the effect of wall vibration on n-decane molecules' diffusion in double-walled CNTs (DWNTs) with different diameters and determine the diffusion mechanisms behind it. Molecular dynamics simulations are performed to generate mass density profiles of confined n-decane molecules. The root mean square fluctuation and mean squared displacement analyses show that the confinement suppresses n-decane molecules' fluctuations. A self-diffusion coefficient of n-decane molecules in a 13.6 Å-diameter DWNT is the largest. However, the vibration enhancement of the n-decane molecules' diffusion in a 27.1 Å-diameter DWNT is 207%, more extensive than that in 13.6 Å-diameter and 10.8 Å-diameter DWNTs. The n-decane-CNT attractive interactions, extreme confinement, and surface friction affect the n-decane molecules' diffusion in CNTs with vibration.
Collapse
Affiliation(s)
- Zhongliang Chen
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiaohu Dong
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Zhangxin Chen
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
22
|
Coordinate covalent grafted ILs-modified MIL-101/PEBA membrane for pervaporation: Adsorption simulation and separation characteristics. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Yang D, Tian D, Cheng C, Liu Y, Zhao Z, Liu Y, Bao Y, Xue C. Carbon nanotube arrays hybrid membrane with excellent separation performance and conductivity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Liu Y, Yang B, Xu J, Zhao H, He Y. Oil-water separation performance of aligned single walled carbon nanotubes membrane: A reactive molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Kamelian FS, Mohammadi T, Naeimpoor F, Sillanpää M. One-Step and Low-Cost Designing of Two-Layered Active-Layer Superhydrophobic Silicalite-1/PDMS Membrane for Simultaneously Achieving Superior Bioethanol Pervaporation and Fouling/Biofouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56587-56603. [PMID: 33269590 DOI: 10.1021/acsami.0c17046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-angle measurements, surface charge determination, scanning electron microscopy, atomic force microscopy, and pervaporation separation using a 5 wt % ethanol solution were used to statically evaluate the fouling/biofouling resistance and pervaporation performances of OALH and TALS membranes in this study. The TALS membrane presented a better resistance and performance. For dynamic experiments, the Box-Behnken design was used to identify the effects of substrates, microorganisms, and nutrient contents as the leading indicators of fermentation broth on the TALS membrane performances for the long-term utilization. The maximum performances of 1.88 kg/m2·h, 32.34, and 59.04 kg/m2·h concerning the permeation flux, separation factor, and pervaporation separation index were obtained, respectively. The dynamic fouling/biofouling resistance of the TALS membrane was also characterized using energy-dispersive X-ray spectroscopy of all the tested membranes. The TALS membrane demonstrated the synergistic resistance of membrane fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.
Collapse
Affiliation(s)
- Fariba Sadat Kamelian
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
| | - Fereshteh Naeimpoor
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, 33199 Miami, Florida, United States
| |
Collapse
|
26
|
Mermigkis PG, Mavrantzas VG. Geometric Analysis of Clusters of Free Volume Accessible to Small Penetrants and Their Connectivity in Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Panagiotis G. Mermigkis
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
27
|
Si Z, Liu C, Li G, Wang Z, Li J, Xue T, Yang S, Cai D, Li S, Zhao H, Qin P, Tan T. Epoxide-based PDMS membranes with an ultrashort and controllable membrane-forming process for 1-butanol/water pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118472] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Xu G, Xiao L, Wu A, Han R, Ni Y. Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Appl Biochem Biotechnol 2020; 193:257-270. [PMID: 32929579 DOI: 10.1007/s12010-020-03417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Microbial tolerance to organic solvents is critical for efficient production of biofuels. In this study, n-butanol tolerance of Escherichia coli JM109 was improved by overexpressing of genes encoding stress-responsive small RNA-regulator, RNA chaperone, and molecular chaperone. Gene rpoS, coding for sigma S subunit of RNA polymerase, was the most efficient in improving n-butanol tolerance of E. coli. The highest OD600 and the specific growth rate of JM109/pQE80L-rpoS reached 1.692 and 0.144 h-1 respectively at 1.0% (v/v) n-butanol. Double and triple expression of molecular chaperones rpoS, secB, and groS were conducted and optimized. Recombinant strains JM109/pQE80L-secB-rpoS and JM109/pQE80L-groS-secB-rpoS exhibited the highest n-butanol tolerance, with specific growth rates of 0.164 and 0.165 h-1, respectively. Membrane integrity, potentials, and cell morphology analyses demonstrated the high viability of JM109/pQE80L-groS-secB-rpoS. This study provides guidance on employing various molecular chaperones for enhancing the tolerance of E. coli against n-butanol.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
29
|
Cheng C, Yang D, Bao M, Xue C. Spray‐coated
PDMS
/
PVDF
composite membrane for enhanced butanol recovery by pervaporation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chi Cheng
- School of Bioengineering Dalian University of Technology Dalian China
| | - Decai Yang
- School of Bioengineering Dalian University of Technology Dalian China
| | - Meiting Bao
- School of Bioengineering Dalian University of Technology Dalian China
| | - Chuang Xue
- School of Bioengineering Dalian University of Technology Dalian China
| |
Collapse
|
30
|
Wu Y, Wang Z, Xin X, Bai F, Xue C. Synergetic Engineering of Central Carbon, Energy, and Redox Metabolisms for High Butanol Production and Productivity by Clostridium acetobutylicum. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Youduo Wu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian 116024, China
| | - Zhenzhong Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xin Xin
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Wang Z, Liu J, Shan H, Li G, Wang Z, Si Z, Cai D, Qin P. A polyvinyl alcohol‐based mixed matrix membrane with uniformly distributed Schiff base network‐1 for ethanol dehydration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhanbin Wang
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Jiahao Liu
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Houchao Shan
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Guozhen Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Ze Wang
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Zhihao Si
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Di Cai
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| | - Peiyong Qin
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology Beijing People's Republic of China
| |
Collapse
|
32
|
Xin X, Cheng C, Du G, Chen L, Xue C. Metabolic Engineering of Histidine Kinases in Clostridium beijerinckii for Enhanced Butanol Production. Front Bioeng Biotechnol 2020; 8:214. [PMID: 32266241 PMCID: PMC7098912 DOI: 10.3389/fbioe.2020.00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Clostridium beijerinckii, a promising industrial microorganism for butanol production, suffers from low butanol titer and lack of high-efficiency genetical engineering toolkit. A few histidine kinases (HKs) responsible for Spo0A phosphorylation have been demonstrated as functionally important components in regulating butanol biosynthesis in solventogenic clostridia such as C. acetobutylicum, but no study about HKs has been conducted in C. beijerinckii. In this study, six annotated but uncharacterized candidate HK genes sharing partial homologies (no less than 30%) with those in C. acetobutylicum were selected based on sequence alignment. The encoding region of these HK genes were deleted with CRISPR-Cas9n-based genome editing technology. The deletion of cbei2073 and cbei4484 resulted in significant change in butanol biosynthesis, with butanol production increased by 40.8 and 17.3% (13.8 g/L and 11.5 g/L vs. 9.8 g/L), respectively, compared to the wild-type. Faster butanol production rates were observed, with butanol productivity greatly increased by 40.0 and 20.0%, respectively, indicating these two HKs are important in regulating cellular metabolism in C. beijerinckii. In addition, the sporulation frequencies of two HKs inactivated strains decreased by 96.9 and 77.4%, respectively. The other four HK-deletion (including cbei2087, cbei2435, cbei4925, and cbei1553) mutant strains showed few phenotypic changes compared with the wild-type. This study demonstrated the role of HKs on sporulation and solventogenesis in C. beijerinckii, and provided a novel engineering strategy of HKs for improving metabolite production. The hyper-butanol-producing strains generated in this study have great potentials in industrial biobutanol production.
Collapse
Affiliation(s)
- Xin Xin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Guangqing Du
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lijie Chen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
33
|
Cheng C, Liu F, Yang HK, Xiao K, Xue C, Yang ST. High-Performance n-Butanol Recovery from Aqueous Solution by Pervaporation with a PDMS Mixed Matrix Membrane Filled with Zeolite. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06104] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fangfang Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hopen K. Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kaijun Xiao
- College of Light Industry and Food Science, South China University of Technology, Guangdong 510641, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
34
|
Yang Y, Si Z, Cai D, Teng X, Li G, Wang Z, Li S, Qin P. High-hydrophobic CF3 groups within PTFPMS membrane for enhancing the furfural pervaporation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116144] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Mao H, Li SH, Zhang AS, Xu LH, Lu JJ, Zhao ZP. Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117543] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Improving pervaporation performance of PDMS membranes by interpenetrating polymer network for recovery of bio-butanol. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Zhu H, Liu G, Yuan J, Chen T, Xin F, Jiang M, Fan Y, Jin W. In-situ recovery of bio-butanol from glycerol fermentation using PDMS/ceramic composite membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Si Z, Li J, Ma L, Cai D, Li S, Baeyens J, Degrève J, Nie J, Tan T, Qin P. The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultraviolet‐Induced Polymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhihao Si
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Jingfang Li
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Liang Ma
- Beijing Advanced Innovation Centre of Soft Matter and EngineeringBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Di Cai
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Shufeng Li
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Jan Baeyens
- Beijing Advanced Innovation Centre of Soft Matter and EngineeringBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
- School of EngineeringUniversity of Warwick Coventry CV4 7AL UK
| | - Jan Degrève
- Department of Chemical EngineeringKatholieke Universiteit Leuven W. de Croylaan 46 B-3001 Leuven Belgium
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Tianwei Tan
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| | - Peiyong Qin
- National Energy R&D Center for BiorefineryBeijing University of Chemical Technology No. 15 North 3rd Ring East Road Beijing 100029 P. R. China
| |
Collapse
|
39
|
Wang Z, Si Z, Cai D, Li G, Li S, Qin P, Tan T. Improving ZIF-8 stability in the preparation process of polyimide-based organic solvent nanofiltration membrane. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Si Z, Li J, Ma L, Cai D, Li S, Baeyens J, Degrève J, Nie J, Tan T, Qin P. The Ultrafast and Continuous Fabrication of a Polydimethylsiloxane Membrane by Ultraviolet-Induced Polymerization. Angew Chem Int Ed Engl 2019; 58:17175-17179. [PMID: 31549761 DOI: 10.1002/anie.201908386] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/18/2019] [Indexed: 01/22/2023]
Abstract
The polydimethylsiloxane (PDMS) membrane commonly used for separation of biobutanol from fermentation broth fails to meet demand owing to its discontinuous and polluting thermal fabrication. Now, an UV-induced polymerization strategy is proposed to realize the ultrafast and continuous fabrication of the PDMS membrane. UV-crosslinking of synthesized methacrylate-functionalized PDMS (MA-PDMS) is complete within 30 s. The crosslinking rate is three orders of magnitude larger than the conventional thermal crosslinking. The MA-PDMS membrane shows a versatile potential for liquid and gas separations, especially featuring an excellent pervaporation performance for n-butanol. Filler aggregation, the major bottleneck for the development of high-performance mixed matrix membranes (MMMs), is overcome, because the UV polymerization strategy demonstrates a freezing effect towards fillers in polymer, resulting in an extremely high-loading silicalite-1/MA-PDMS MMM with uniform particle distribution.
Collapse
Affiliation(s)
- Zhihao Si
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Jingfang Li
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Liang Ma
- Beijing Advanced Innovation Centre of Soft Matter and Engineering, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Shufeng Li
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Jan Baeyens
- Beijing Advanced Innovation Centre of Soft Matter and Engineering, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China.,School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Jan Degrève
- Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001, Leuven, Belgium
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| | - Peiyong Qin
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, No. 15 North 3rd Ring East Road, Beijing, 100029, P. R. China
| |
Collapse
|
41
|
Vincent RH, Parent JS, Daugulis AJ. Using poly(vinyldodecylimidazolium bromide) for the in-situ product recovery of n-butanol. Biotechnol Prog 2019; 36:e2926. [PMID: 31587514 DOI: 10.1002/btpr.2926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
The mitigation of end-product inhibition during the biosynthesis of n-butanol is demonstrated for an in-situ product recovery (ISPR) system employing a poly(ionic liquid) (PIL) absorbent. The thermodynamic affinity of poly(vinyldodecylimidazolium bromide) [P(VC12 ImBr)] for n-butanol, acetone and ethanol versus water was measured at conditions experienced in a typical acetone-ethanol-butanol (ABE) fermentation. In addition to providing a high n-butanol partition coefficient (PC = 6.5) and selectivity (αBuOH/water = 46), P(VC12 ImBr) is shown to be biocompatible with Saccharomyces cerevisiae and Clostridium acetobutylicum. Furthermore, the diffusivity of n-butanol in a hydrated PIL provides absorption rates that support ISPR applications. Using a 5 wt% PIL phase fraction relative to the aqueous phase mass, P(VC12 ImBr) improved the volumetric productivity of a batch ABE ISPR process by 31% relative to a control fermentation. The concentration of n-butanol in the P(VC12 ImBr) phase was sufficient to increase the alcohol concentration from 1.5 wt% in the fermentation medium to 25 wt% in the saturated PIL, thereby facilitating downstream n-butanol recovery.
Collapse
Affiliation(s)
- Rachel H Vincent
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - J Scott Parent
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
42
|
Chen T, Xu F, Zhang W, Zhou J, Dong W, Jiang Y, Lu J, Fang Y, Jiang M, Xin F. High butanol production from glycerol by using Clostridium sp. strain CT7 integrated with membrane assisted pervaporation. BIORESOURCE TECHNOLOGY 2019; 288:121530. [PMID: 31130345 DOI: 10.1016/j.biortech.2019.121530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
In this study, a unique butanol-ethanol fermentation process from glycerol integrated with pervaporation by using Clostridium sp. strain CT7 was investigated. 20.4 g/L of butanol and 0.3 g/L of ethanol were produced from 51.3 g/L of glycerol in the PV coupled batch fermentation process with butanol productivity of 0.15 g/L/h and yield of 0.40 g/g due to the reduced butanol inhibition by butanol removal. Subsequently, 41.9 g/L of butanol and 0.4 g/L of ethanol were obtained from 103.3 g/L of glycerol, with butanol productivity of 0.21 g/L/h and yield of 0.41 g/g in the PV coupled fed-batch fermentation process. The high butanol production could be attributed to the thin PDMS layer and negligible transportation resistance of the support. These results indicated the PV coupled fermentation process from glycerol using PDMS/ceramic composite membrane by Clostridium sp. strain CT7 might show a great potential for sustainable biobutanol production from low-cost carbon sources.
Collapse
Affiliation(s)
- Tianpeng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Fanli Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jiasheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yan Fang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
43
|
Si Z, Cai D, Li S, Li G, Wang Z, Qin P. A high-efficiency diffusion process in carbonized ZIF-8 incorporated mixed matrix membrane for n-butanol recovery. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Mao H, Zhen HG, Ahmad A, Li SH, Liang Y, Ding JF, Wu Y, Li LZ, Zhao ZP. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Synthesis and Characterization of a High Flux Nanocellulose-Cellulose Acetate Nanocomposite Membrane. MEMBRANES 2019; 9:membranes9060070. [PMID: 31174312 PMCID: PMC6630560 DOI: 10.3390/membranes9060070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022]
Abstract
Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into the polymer matrix did not change the membrane flux (~15 L · m - 2 · h - 1 ) and Bovine Serum Albumin (BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the flux by seven times to ~100 L · m - 2 · h - 1 , but the rejection was decreased to 60-70%. Such a change in membrane performance was due to the formation of hydrophilic nanochannels by the incorporation of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing the flux. When the concentration of the CNF in the membrane matrix was further increased to 0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels with high CNF contents.
Collapse
|
46
|
Si Z, Cai D, Li S, Zhang C, Qin P, Tan T. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Li S, Li P, Cai D, Shan H, Zhao J, Wang Z, Qin P, Tan T. Boosting pervaporation performance by promoting organic permeability and simultaneously inhibiting water transport via blending PDMS with COF-300. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Zhang G, Cheng H, Su P, Zhang X, Zheng J, Lu Y, Liu Q. PIM-1/PDMS hybrid pervaporation membrane for high-efficiency separation of n-butanol-water mixture under low concentration. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Li S, Chen Z, Yang Y, Si Z, Li P, Qin P, Tan T. Improving the pervaporation performance of PDMS membranes for n-butanol by incorporating silane-modified ZIF-8 particles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
The pervaporative membrane with vertically aligned carbon nanotube nanochannel for enhancing butanol recovery. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|