1
|
Park K, Lee M, Song J, Ha AR, Ha S, Jo S, Song J, Choi SH, Kim W, Ryu K, Nam J, Lee KT. Operando Spatial Pressure Mapping Analysis for Prototype Lithium Metal Pouch Cells Under Practical Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304979. [PMID: 37811768 PMCID: PMC10667808 DOI: 10.1002/advs.202304979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/25/2023] [Indexed: 10/10/2023]
Abstract
Monitoring and diagnosing the battery status in real-time are of utmost importance for clarifying failure mechanism, improving battery performance, and ensuring safety, particularly under fast charging conditions. Recently, advanced operando techniques have been developed to observe changes in the microstructures of lithium deposits using laboratory-scale cell designs, focusing on understanding the nature of Li metal electrodes. However, the macroscopic spatial inhomogeneity of lithium electroplating/stripping in the prototype pressurized pouch cells has not been measured in real-time under practical conditions. Herein, a new noninvasive operando technique, spatial pressure mapping analysis, is introduced to macroscopically and quantitatively measure spatial pressure changes in a pressurized pouch cell during cycling. Moreover, dynamic spatial changes in the macroscopic morphology of the lithium metal electrode are theoretically visualized by combining operando pressure mapping data with mechanical analyses of cell components. Additionally, under fast charging conditions, the direct correlation between abrupt capacity fading and sudden increases in spatial pressure distribution inhomogeneity is demonstrated through comparative analysis of pouch cells under various external pressures, electrolyte species, and electrolyte weight to cell capacity (e/c) ratios. This operando technique provides insights for assessing the current battery status and understanding the complex origin of cell degradation behavior in pressurized pouch cells.
Collapse
Affiliation(s)
- Kyobin Park
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Myungjae Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jongchan Song
- Hyundai Motor Company37 Cheoldobangmulgwan‐roUiwang‐siGyeonggi‐do16082Republic of Korea
| | - A. Reum Ha
- Hyundai Motor Company37 Cheoldobangmulgwan‐roUiwang‐siGyeonggi‐do16082Republic of Korea
| | - Seongmin Ha
- Hyundai Motor Company37 Cheoldobangmulgwan‐roUiwang‐siGyeonggi‐do16082Republic of Korea
| | - Seunghyeon Jo
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Juyeop Song
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung Hyun Choi
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Wonkeun Kim
- Hyundai Motor Company37 Cheoldobangmulgwan‐roUiwang‐siGyeonggi‐do16082Republic of Korea
| | - Kyunghan Ryu
- Hyundai Motor Company37 Cheoldobangmulgwan‐roUiwang‐siGyeonggi‐do16082Republic of Korea
| | - Jaewook Nam
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Kyu Tae Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
2
|
Gao Y, Zhang B. Probing the Mechanically Stable Solid Electrolyte Interphase and the Implications in Design Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205421. [PMID: 36281818 DOI: 10.1002/adma.202205421] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Indexed: 05/05/2023]
Abstract
The inevitable volume expansion of secondary battery anodes during cycling imposes forces on the solid electrolyte interphase (SEI). The battery performance is closely related to the capability of SEI to maintain intact under the cyclic loading conditions, which basically boils down to the mechanical properties of SEI. The volatile and complex nature of SEI as well as its nanoscale thickness and environmental sensitivity make the interpretation of its mechanical behavior many roadblocks. Widely varied approaches are adopted to investigate the mechanical properties of SEI, and diverse opinions are generated. The lack of consensus at both technical and theoretical levels has hindered the development of effective design strategies to maximize the mechanical stability of SEIs. Here, the essential and desirable mechanical properties of SEI, the available mechanical characterization methods, and important issues meriting attention for higher test accuracy are outlined. Previous attempts to optimize battery performance by tuning SEI mechanical properties are also scrutinized, inconsistencies in these efforts are elucidated, and the underlying causes are explored. Finally, a set of research protocols is proposed to accelerate the achievement of superior battery cycling performance by improving the mechanical stability of SEI.
Collapse
Affiliation(s)
- Yao Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Biao Zhang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Yoon I, Larson JM, Kostecki R. The Effect of the SEI Layer Mechanical Deformation on the Passivity of a Si Anode in Organic Carbonate Electrolytes. ACS NANO 2023; 17:6943-6954. [PMID: 36972420 DOI: 10.1021/acsnano.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The solid electrolyte interphase (SEI) on a Si negative electrode in carbonate-based organic electrolytes shows intrinsically poor passivating behavior, giving rise to unsatisfactory calendar life of Li-ion batteries. Moreover, mechanical strains induced in the SEI due to large volume changes of Si during charge-discharge cycling could contribute to its mechanical instability and poor passivating behavior. This study elucidates the influence that static mechanical deformation of the SEI has on the rate of unwanted parasitic reactions at the Si/electrolyte interface as a function of electrode potential. The experimental approach involves the utilization of Si thin-film electrodes on substrates with disparate elastic moduli, which either permit or suppress the SEI deformation in response to Si volume changes upon charging-discharging. We find that static mechanical stretching and deformation of the SEI results in an increased parasitic electrolyte reduction current on Si. Furthermore, attenuated total reflection and near-field Fourier-transform infrared nanospectroscopy reveal that the static mechanical stretching and deformation of the SEI fosters a selective transport of linear carbonate solvent through, and nanoconfinement within, the SEI. These, in turn, promote selective solvent reduction and continuous electrolyte decomposition on Si electrodes, reducing the calendar life of Si anode-based Li-ion batteries. Finally, possible correlations between the structure and chemical composition of the SEI layer and its mechanical and chemical resilience under prolonged mechanical deformation are discussed in detail.
Collapse
Affiliation(s)
- Insun Yoon
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Jonathan M Larson
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Robert Kostecki
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
4
|
de Vasconcelos LS, Xu R, Xu Z, Zhang J, Sharma N, Shah SR, Han J, He X, Wu X, Sun H, Hu S, Perrin M, Wang X, Liu Y, Lin F, Cui Y, Zhao K. Chemomechanics of Rechargeable Batteries: Status, Theories, and Perspectives. Chem Rev 2022; 122:13043-13107. [PMID: 35839290 DOI: 10.1021/acs.chemrev.2c00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemomechanics is an old subject, yet its importance has been revived in rechargeable batteries where the mechanical energy and damage associated with redox reactions can significantly affect both the thermodynamics and rates of key electrochemical processes. Thanks to the push for clean energy and advances in characterization capabilities, significant research efforts in the last two decades have brought about a leap forward in understanding the intricate chemomechanical interactions regulating battery performance. Going forward, it is necessary to consolidate scattered ideas in the literature into a structured framework for future efforts across multidisciplinary fields. This review sets out to distill and structure what the authors consider to be significant recent developments on the study of chemomechanics of rechargeable batteries in a concise and accessible format to the audiences of different backgrounds in electrochemistry, materials, and mechanics. Importantly, we review the significance of chemomechanics in the context of battery performance, as well as its mechanistic understanding by combining electrochemical, materials, and mechanical perspectives. We discuss the coupling between the elements of electrochemistry and mechanics, key experimental and modeling tools from the small to large scales, and design considerations. Lastly, we provide our perspective on ongoing challenges and opportunities ranging from quantifying mechanical degradation in batteries to manufacturing battery materials and developing cyclic protocols to improve the mechanical resilience.
Collapse
Affiliation(s)
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhengrui Xu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jin Zhang
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nikhil Sharma
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sameep Rajubhai Shah
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiaxiu Han
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaomei He
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xianyang Wu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hong Sun
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shan Hu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Madison Perrin
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaokang Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Feng Lin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Kejie Zhao
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
McBrayer JD, Apblett CA, Harrison KL, Fenton KR, Minteer SD. Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries. NANOTECHNOLOGY 2021; 32:502005. [PMID: 34315151 DOI: 10.1088/1361-6528/ac17fe] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A stable solid electrolyte interphase (SEI) layer is key to high performing lithium ion and lithium metal batteries for metrics such as calendar and cycle life. The SEI must be mechanically robust to withstand large volumetric changes in anode materials such as lithium and silicon, so understanding the mechanical properties and behavior of the SEI is essential for the rational design of artificial SEI and anode form factors. The mechanical properties and mechanical failure of the SEI are challenging to study, because the SEI is thin at only ~10-200 nm thick and is air sensitive. Furthermore, the SEI changes as a function of electrode material, electrolyte and additives, temperature, potential, and formation protocols. A variety ofin situandex situtechniques have been used to study the mechanics of the SEI on a variety of lithium ion battery anode candidates; however, there has not been a succinct review of the findings thus far. Because of the difficulty of isolating the true SEI and its mechanical properties, there have been a limited number of studies that can fully de-convolute the SEI from the anode it forms on. A review of past research will be helpful for culminating current knowledge and helping to inspire new innovations to better quantify and understand the mechanical behavior of the SEI. This review will summarize the different experimental and theoretical techniques used to study the mechanics of SEI on common lithium battery anodes and their strengths and weaknesses.
Collapse
Affiliation(s)
- Josefine D McBrayer
- Power Sources Technology Group, Sandia National Laboratory, Albuquerque, NM, United States of America
- Department of Chemical Engineering, University of Utah, 50 S Central Campus Dr, Salt Lake City, UT 84112, United States of America
| | - Christopher A Apblett
- Power Sources Technology Group, Sandia National Laboratory, Albuquerque, NM, United States of America
| | - Katharine L Harrison
- Nanoscale Sciences Department, Sandia National Laboratory, Albuquerque, NM, United States of America
| | - Kyle R Fenton
- Power Sources Technology Group, Sandia National Laboratory, Albuquerque, NM, United States of America
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT 84112, United States of America
| |
Collapse
|
6
|
Pan H, Chen Y, Pang W, Sun H, Li J, Lin Y, Kolosov O, Huang Z. Complementary sample preparation strategies (PVD/BEXP) combining with multifunctional SPM for the characterizations of battery interfacial properties. MethodsX 2021; 8:101250. [PMID: 34434773 PMCID: PMC8374284 DOI: 10.1016/j.mex.2021.101250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/22/2021] [Indexed: 11/17/2022] Open
Abstract
The cathode/anode-electrolyte interfaces in lithium/sodium ion batteries act as the “gate” for the ion exchange between the solid electrode and liquid electrolyte. Understanding the interfacial properties of these solid-liquid interfaces is essential for better design high-performance lithium/sodium ion batteries. Here, we provide a novel method for studying solid-liquid interfacial properties of battery materials through combining physical vapor deposition (PVD) and beam-exit cross-sectional polishing (BEXP) followed by controlled environment multifunctional Scanning Probe Microscope (SPM). In this method, commercial battery materials can be either directly grown on the current collector substrates, or polished by obliqued Ar-ion beams to get a nanoscale flat surface which allows the multifunctional SPM to study sample directly in the liquid electrolyte or in protective oxygen/H2O free environment. This approach allows to investigate wide range of interfacial properties, including surface morphology, internal cracks, mechanical properties, electronic/ionic conductivity and surface potential, with nanoscale resolution in-operando during the battery cycles as well as post-mortem.PVD and novel BEXP methods were introduced to prepare battery powder materials as perfect specimens for nanoscale SPM characterization. Various physical/chemical properties of battery materials can be probed on the as-prepared specimens under liquid electrolyte using in situ/operando SPM techniques. Ex situ/post-mortem analyses based on the controlled environment multifunction SPM characterizations can be achieved in the BEXP polished degradation battery electrodes.
Collapse
Affiliation(s)
- Handian Pan
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China
| | - Yue Chen
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China
- Physics Department and Materials Science Institute, Lancaster University, LA1 4YB, UK
- Corresponding authors at: College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China.
| | - Wenhui Pang
- Bruker Nano Surfaces and Metrology Division, Bruker (Beijing) Scientific Technology Co. Ltd., Beijing 100081, China
| | - Hao Sun
- Bruker Nano Surfaces and Metrology Division, Bruker (Beijing) Scientific Technology Co. Ltd., Beijing 100081, China
| | - Jiaxin Li
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy, Fuzhou 350117, China
- Corresponding authors at: College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China.
| | - Yingbin Lin
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Engineering Technical Research Centre of Solar-Energy Conversion and Stored Energy, Fuzhou 350117, China
| | - Oleg Kolosov
- Physics Department and Materials Science Institute, Lancaster University, LA1 4YB, UK
| | - Zhigao Huang
- College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Centre for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
- Corresponding authors at: College of Physics and Energy, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
7
|
Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y. Highly Conductive, Flexible, and Nonflammable Double-Network Poly(ionic liquid)-Based Ionogel Electrolyte for Flexible Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25410-25420. [PMID: 34009949 DOI: 10.1021/acsami.1c06077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The solid-state lithium-ion battery is proposed as the ultimate form of battery and has rapidly become an updated attentive research field due to its high safety and extreme temperature tolerance. However, current solid-state electrolytes hardly meet the requirement in practical applications due to its low ionic conductivity, weak mechanical properties, and poor interfacial contact between the electrolyte and the electrode. In this work, we developed a double-network-supported poly(ionic liquid)-based ionogel electrolyte (DN-Ionogel) via a one-step method. Due to its compact cross-linking structure, the leakage-free DN-Ionogel electrolyte exhibits outstanding flexibility and favorable mechanical properties. In this ionogel electrolyte, the double network favors dissociation of lithium bis(trifluoromethanesulfony)imide (LiTFSI), further resulting in remarkable ionic conductivity (1.8 × 10-3 S/cm, room temperature), wide electrochemical window (up to 5.0 V), and high lithium-ion transference number (0.33). Furthermore, the cell (LiFePO4||DN-Ionogel||Lithium) delivers a discharge capacity as high as 150.5 mAh/g, stable cyclic performance (over 200 cycles), and superior rate behavior.
Collapse
Affiliation(s)
- Ling Liang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Xianhong Chen
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenfang Yuan
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Han Chen
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Changsha University, Changsha 410300, China
| | - Haiyang Liao
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313002, China
| |
Collapse
|
8
|
Ma P, Fang Y, Li A, Wen B, Cheng H, Zhou X, Shi Y, Yang HY, Lin Y. Highly efficient and stable ionic liquid-based gel electrolytes. NANOSCALE 2021; 13:7140-7151. [PMID: 33889871 DOI: 10.1039/d0nr08765c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gel electrolytes are promising candidates for dye-sensitized solar cells (DSSCs) and other devices, but the ways to obtain stable gels always result in sacrifice of their ionic conductivity. This contradiction seriously limits the practical application of gel electrolytes. Herein, a new design strategy using rich carboxylic group-modified silica nanoparticles (COOH-SiO2) with a branched, well-organized framework to develop ionic liquid-based gel electrolytes possessing high conductivity is demonstrated. The branched network of COOH-SiO2 and the strong interaction in electrolytes result in the effective solidification of ionic liquids. Moreover, adding COOH-SiO2 to ionic liquid electrolytes contributes to salt dissociation, decreases the activation energy, and improves the charge transport and recombination characteristics at the electrolyte/electrode interface. DSSCs fabricated with COOH-SiO2 nanoparticles deliver a higher short-circuit photocurrent density (Jsc) than the reference cell. A maximum efficiency of 8.02% with the highest Jsc value of 16.60 mA cm-2 is obtained for solar cells containing 6 wt% COOH-SiO2.
Collapse
Affiliation(s)
- Pin Ma
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bai WL, Zhang Z, Chen X, Zhang Q, Xu ZX, Zhai GY, Lin X, Liu X, Tadesse Tsega T, Zhao C, Wang KX, Chen JS. Phosphazene-derived stable and robust artificial SEI for protecting lithium anodes of Li–O2 batteries. Chem Commun (Camb) 2020; 56:12566-12569. [DOI: 10.1039/d0cc05303a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
An artificial solid electrolyte interphase with high ionic conductivity and mechanical robustness was designed to suppresses the growth of Li dendrites.
Collapse
|
10
|
Zheng J, Kim MS, Tu Z, Choudhury S, Tang T, Archer LA. Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chem Soc Rev 2020; 49:2701-2750. [DOI: 10.1039/c9cs00883g] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rational approaches for achieving fine control of the electrodeposition morphology of Li are required to create commercially-relevant rechargeable Li metal batteries.
Collapse
Affiliation(s)
- Jingxu Zheng
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| | - Mun Sek Kim
- Department of Chemical Engineering
- Stanford University
- Stanford
- USA
| | | | | | - Tian Tang
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
| | - Lynden A. Archer
- Department of Materials Science and Engineering
- Cornell University
- Ithaca
- USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering
| |
Collapse
|
11
|
Abstract
With the ever-increasing demand for power sources of high energy density and stability for emergent electrical vehicles and portable electronic devices, rechargeable batteries (such as lithium-ion batteries, fuel batteries, and metal–air batteries) have attracted extensive interests. Among the emerging battery technologies, metal–air batteries (MABs) are under intense research and development focus due to their high theoretical energy density and high level of safety. Although significant progress has been achieved in improving battery performance in the past decade, there are still numerous technical challenges to overcome for commercialization. Herein, this mini-review summarizes major issues vital to MABs, including progress on packaging and crucial manufacturing technologies for cathode, anode, and electrolyte. Future trends and prospects of advanced MABs by additive manufacturing and nanoengineering are also discussed.
Collapse
|