1
|
Schloz M, Pekin TC, Brown HG, Byrne DO, Esser BD, Terzoudis-Lumsden E, Taniguchi T, Watanabe K, Findlay SD, Haas B, Ciston J, Koch CT. Improved Three-Dimensional Reconstructions in Electron Ptychography through Defocus Series Measurements. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024:ozae110. [PMID: 39558540 DOI: 10.1093/mam/ozae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 10/19/2024] [Indexed: 11/20/2024]
Abstract
A detailed analysis of ptychography for three-dimensional (3D) phase reconstructions of thick specimens is performed. We introduce multi-focus ptychography, which incorporates a 4D-STEM defocus series to enhance the quality of 3D reconstructions along the beam direction through a higher overdetermination ratio. This method is compared with established multi-slice ptychography techniques, such as conventional ptychography, regularized ptychography, and multi-mode ptychography. Additionally, we contrast multi-focus ptychography with an alternative method that uses virtual optical sectioning through a reconstructed scattering matrix (S-matrix), which offers more precise 3D structure information compared to conventional ptychography. Our findings from multiple 3D reconstructions based on simulated and experimental data demonstrate that multi-focus ptychography surpasses other techniques, particularly in accurately reconstructing the surfaces and interface regions of thick specimens.
Collapse
Affiliation(s)
- Marcel Schloz
- Department of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Newtonstraße 15, Berlin 12489, Germany
| | - Thomas C Pekin
- Department of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Newtonstraße 15, Berlin 12489, Germany
| | - Hamish G Brown
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Dana O Byrne
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bryan D Esser
- Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
| | | | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Scott D Findlay
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Benedikt Haas
- Department of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Newtonstraße 15, Berlin 12489, Germany
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christoph T Koch
- Department of Physics and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Newtonstraße 15, Berlin 12489, Germany
| |
Collapse
|
2
|
Robinson AW, Moshtaghpour A, Wells J, Nicholls D, Chi M, MacLaren I, Kirkland AI, Browning ND. High-speed 4-dimensional scanning transmission electron microscopy using compressive sensing techniques. J Microsc 2024; 295:278-286. [PMID: 38711338 DOI: 10.1111/jmi.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Here we show that compressive sensing allows 4-dimensional (4-D) STEM data to be obtained and accurately reconstructed with both high-speed and reduced electron fluence. The methodology needed to achieve these results compared to conventional 4-D approaches requires only that a random subset of probe locations is acquired from the typical regular scanning grid, which immediately generates both higher speed and the lower fluence experimentally. We also consider downsampling of the detector, showing that oversampling is inherent within convergent beam electron diffraction (CBED) patterns and that detector downsampling does not reduce precision but allows faster experimental data acquisition. Analysis of an experimental atomic resolution yttrium silicide dataset shows that it is possible to recover over 25 dB peak signal-to-noise ratio in the recovered phase using 0.3% of the total data. Lay abstract: Four-dimensional scanning transmission electron microscopy (4-D STEM) is a powerful technique for characterizing complex nanoscale structures. In this method, a convergent beam electron diffraction pattern (CBED) is acquired at each probe location during the scan of the sample. This means that a 2-dimensional signal is acquired at each 2-D probe location, equating to a 4-D dataset. Despite the recent development of fast direct electron detectors, some capable of 100kHz frame rates, the limiting factor for 4-D STEM is acquisition times in the majority of cases, where cameras will typically operate on the order of 2kHz. This means that a raster scan containing 256^2 probe locations can take on the order of 30s, approximately 100-1000 times longer than a conventional STEM imaging technique using monolithic radial detectors. As a result, 4-D STEM acquisitions can be subject to adverse effects such as drift, beam damage, and sample contamination. Recent advances in computational imaging techniques for STEM have allowed for faster acquisition speeds by way of acquiring only a random subset of probe locations from the field of view. By doing this, the acquisition time is significantly reduced, in some cases by a factor of 10-100 times. The acquired data is then processed to fill-in or inpaint the missing data, taking advantage of the inherently low-complex signals which can be linearly combined to recover the information. In this work, similar methods are demonstrated for the acquisition of 4-D STEM data, where only a random subset of CBED patterns are acquired over the raster scan. We simulate the compressive sensing acquisition method for 4-D STEM and present our findings for a variety of analysis techniques such as ptychography and differential phase contrast. Our results show that acquisition times can be significantly reduced on the order of 100-300 times, therefore improving existing frame rates, as well as further reducing the electron fluence beyond just using a faster camera.
Collapse
Affiliation(s)
- Alex W Robinson
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK
- SenseAI Innovations Ltd., University of Liverpool, Liverpool, UK
| | - Amirafshar Moshtaghpour
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK
- Correlated Imaging Group, Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
| | - Jack Wells
- SenseAI Innovations Ltd., University of Liverpool, Liverpool, UK
- Distributed Algorithms Centre for Doctoral Training, University of Liverpool, Liverpool, UK
| | - Daniel Nicholls
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK
- SenseAI Innovations Ltd., University of Liverpool, Liverpool, UK
| | - Miaofang Chi
- Chemical Science Division, Centre for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ian MacLaren
- School of Physics and Astronomy, University of Glasgow, Glasgow, UK
| | - Angus I Kirkland
- Correlated Imaging Group, Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Materials, University of Oxford, Oxford, UK
| | - Nigel D Browning
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK
- SenseAI Innovations Ltd., University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Hu H, Yang R, Zeng Z. Advances in Electrochemical Liquid-Phase Transmission Electron Microscopy for Visualizing Rechargeable Battery Reactions. ACS NANO 2024; 18:12598-12609. [PMID: 38723158 DOI: 10.1021/acsnano.4c03319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This review presents an overview of the application of electrochemical liquid-phase transmission electron microscopy (ELP-TEM) in visualizing rechargeable battery reactions. The technique provides atomic-scale spatial resolution and real-time temporal resolution, enabling direct observation and analysis of battery materials and processes under realistic working conditions. The review highlights key findings and insights obtained by ELP-TEM on the electrochemical reaction mechanisms and discusses the current limitations and future prospects of ELP-TEM, including improvements in spatial and temporal resolution and the expansion of the scope of materials and systems that can be studied. Furthermore, the review underscores the critical role of ELP-TEM in understanding and optimizing the design and fabrication of high-performance, long-lasting rechargeable batteries.
Collapse
Affiliation(s)
- Honglu Hu
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
| | - Ruijie Yang
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, People's Republic of China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| |
Collapse
|
4
|
Ma Y, Shi J, Guzman R, Li A, Zhou W. Aberration Correction for Large-Angle Illumination Scanning Transmission Electron Microscopy by Using Iterative Electron Ptychography Algorithms. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:226-235. [PMID: 38578297 DOI: 10.1093/mam/ozae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 04/06/2024]
Abstract
Modern aberration correctors in the scanning transmission electron microscope (STEM) have dramatically improved the attainable spatial resolution and enabled atomical structure and spectroscopic analysis even at low acceleration voltages (≤80 kV). For a large-angle illumination, achieving successful aberration correction to high angles is challenging with an aberration corrector, which limits further improvements in applications such as super-resolution, three-dimensional atomic depth resolution, or atomic surface morphology analyses. Electron ptychography based on four-dimensional STEM can provide a postprocessing strategy to overcome the current technological limitations. In this work, we have demonstrated that aberration correction for large-angle illumination is feasible by pushing the capabilities of regularized ptychographic iterative engine algorithms to reconstruct 4D data sets acquired using a relatively low-efficiency complementary metal oxide semiconductor camera. We report super resolution (0.71 Å) with large-angle illumination (50-60 mrad) and under 60 kV accelerating voltage.
Collapse
Affiliation(s)
- Yinhang Ma
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jinan Shi
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Roger Guzman
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ang Li
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Takeguchi M, Hashimoto A, Mitsuishi K. Depth sectioning using environmental and atomic-resolution STEM. Microscopy (Oxf) 2024; 73:145-153. [PMID: 38252480 DOI: 10.1093/jmicro/dfae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
(Scanning) transmission electron microscopy (TEM) images of samples in gas and liquid media are acquired with an environmental cell (EC) via silicon nitride membranes. The ratio of sample signal against the background is a significant factor for resolution. Depth-sectioning scanning TEM (STEM) is a promising technique that enhances the signal for a sample embedded in a matrix. It can increase the resolution to the atomic level, thereby enabling EC-STEM applications in important areas. This review introduces depth-sectioning STEM and its applications to high-resolution EC-STEM imaging of samples in gases and in liquids.
Collapse
Affiliation(s)
- Masaki Takeguchi
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ayako Hashimoto
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Kazutaka Mitsuishi
- Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|
6
|
Nguyen KX, Jiang Y, Lee CH, Kharel P, Zhang Y, van der Zande AM, Huang PY. Achieving sub-0.5-angstrom-resolution ptychography in an uncorrected electron microscope. Science 2024; 383:865-870. [PMID: 38386746 DOI: 10.1126/science.adl2029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Subangstrom resolution has long been limited to aberration-corrected electron microscopy, where it is a powerful tool for understanding the atomic structure and properties of matter. Here, we demonstrate electron ptychography in an uncorrected scanning transmission electron microscope (STEM) with deep subangstrom spatial resolution down to 0.44 angstroms, exceeding the conventional resolution of aberration-corrected tools and rivaling their highest ptychographic resolutions. Our approach, which we demonstrate on twisted two-dimensional materials in a widely available commercial microscope, far surpasses prior ptychographic resolutions (1 to 5 angstroms) of uncorrected STEMs. We further show how geometric aberrations can create optimized, structured beams for dose-efficient electron ptychography. Our results demonstrate that expensive aberration correctors are no longer required for deep subangstrom resolution.
Collapse
Affiliation(s)
- Kayla X Nguyen
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yi Jiang
- Advanced Photon Source Facility, Argonne National Laboratory, Lemont, IL, USA
| | - Chia-Hao Lee
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Priti Kharel
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Arend M van der Zande
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pinshane Y Huang
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Kim NY, Cao S, More KL, Lupini AR, Miao J, Chi M. Hollow Ptychography: Toward Simultaneous 4D Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208162. [PMID: 37203310 DOI: 10.1002/smll.202208162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/13/2023] [Indexed: 05/20/2023]
Abstract
With the recent development of high-acquisition-speed pixelated detectors, 4D scanning transmission electron microscopy (4D-STEM) is becoming routinely available in high-resolution electron microscopy. 4D-STEM acts as a "universal" method that provides local information on materials that is challenging to extract from bulk techniques. It extends conventional STEM imaging to include super-resolution techniques and to provide quantitative phase-based information, such as differential phase contrast, ptychography, or Bloch wave phase retrieval. However, an important missing factor is the chemical and bonding information provided by electron energy loss spectroscopy (EELS). 4D-STEM and EELS cannot currently be acquired simultaneously due to the overlapping geometry of the detectors. Here, the feasibility of modifying the detector geometry to overcome this challenge for bulk specimens is demonstrated, and the use of a partial or defective detector for ptycholgaphic structural imaging is explored. Results show that structural information beyond the diffraction-limit and chemical information from the material can be extracted together, resulting in simultaneous multi-modal measurements, adding the additional dimensions of spectral information to 4D datasets.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Shaohong Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Karren L More
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
8
|
Yoon D, Shao YT, Yang Y, Ren D, Abruña HD, Muller DA. Imaging Li Vacancies in a Li-Ion Battery Cathode Material by Depth Sectioning Multi-slice Electron Ptychographic Reconstructions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1263-1264. [PMID: 37613650 DOI: 10.1093/micmic/ozad067.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Dasol Yoon
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Yu-Tsun Shao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, United States
| | - Yao Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Dong Ren
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hector D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - David A Muller
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, United States
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Scheid A, Wang Y, Jung M, Heil T, Moia D, Maier J, van Aken PA. Electron Ptychographic Phase Imaging of Beam-sensitive All-inorganic Halide Perovskites Using Four-dimensional Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:869-878. [PMID: 37749687 DOI: 10.1093/micmic/ozad017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 02/05/2023] [Indexed: 09/27/2023]
Abstract
Halide perovskites (HPs) are promising candidates for optoelectronic devices, such as solar cells or light-emitting diodes. Despite recent progress in performance optimization and low-cost manufacturing, their commercialization remains hindered due to structural instabilities. While essential to the development of the technology, the relation between the microscopic properties of HPs and the relevant degradation mechanisms is still not well understood. The sensitivity of HPs toward electron-beam irradiation poses significant challenges for transmission electron microscopy (TEM) investigations of structure and degradation mechanisms at the atomic scale. However, technological advances and the development of direct electron cameras (DECs) have opened up a completely new field of electron microscopy: four-dimensional scanning TEM (4D-STEM). From a 4D-STEM dataset, it is possible to extract not only the intensity signal for any STEM detector geometry but also the phase information of the specimen. This work aims to show the potential of 4D-STEM, in particular, electron exit-wave phase reconstructions via focused probe ptychography as a low-dose and dose-efficient technique to image the atomic structure of beam-sensitive HPs. The damage mechanism under conventional irradiation is described and atomically resolved almost aberration-free phase images of three all-inorganic HPs, CsPbBr3, CsPbIBr2, and CsPbI3, are presented with a resolution down to the aperture-constrained diffraction limit.
Collapse
Affiliation(s)
- Anna Scheid
- Max Planck Institute for Solid State Research, Stuttgart Center for Electron Microscopy, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
| | - Yi Wang
- Max Planck Institute for Solid State Research, Stuttgart Center for Electron Microscopy, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
- Nanjing University of Aeronautics and Astronautics, Center for Microscopy and Analysis, Jiangjun Road 29, Jiangning, 211106, Nanjing Province, China
| | - Mina Jung
- Max Planck Institute for Solid State Research, Department of Physical Chemistry of Solids, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
| | - Tobias Heil
- Max Planck Institute for Solid State Research, Stuttgart Center for Electron Microscopy, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
| | - Davide Moia
- Max Planck Institute for Solid State Research, Department of Physical Chemistry of Solids, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
| | - Joachim Maier
- Max Planck Institute for Solid State Research, Department of Physical Chemistry of Solids, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Stuttgart Center for Electron Microscopy, Heisenbergstrasse 1, 70569 Stuttgart, Baden-Württemberg, Germany
| |
Collapse
|
10
|
Schloz M, Müller J, Pekin TC, Van den Broek W, Madsen J, Susi T, Koch CT. Deep reinforcement learning for data-driven adaptive scanning in ptychography. Sci Rep 2023; 13:8732. [PMID: 37253763 PMCID: PMC10229550 DOI: 10.1038/s41598-023-35740-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
We present a method that lowers the dose required for an electron ptychographic reconstruction by adaptively scanning the specimen, thereby providing the required spatial information redundancy in the regions of highest importance. The proposed method is built upon a deep learning model that is trained by reinforcement learning, using prior knowledge of the specimen structure from training data sets. We show that using adaptive scanning for electron ptychography outperforms alternative low-dose ptychography experiments in terms of reconstruction resolution and quality.
Collapse
Affiliation(s)
- Marcel Schloz
- Institute of Physics and IRIS Adlershof, Humboldt Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany.
| | - Johannes Müller
- Institute of Physics and IRIS Adlershof, Humboldt Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
| | - Thomas C Pekin
- Institute of Physics and IRIS Adlershof, Humboldt Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
| | - Wouter Van den Broek
- Institute of Physics and IRIS Adlershof, Humboldt Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
| | - Jacob Madsen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Christoph T Koch
- Institute of Physics and IRIS Adlershof, Humboldt Universität zu Berlin, Newtonstraße 15, 12489, Berlin, Germany
| |
Collapse
|
11
|
Lei X, Zhao J, Wang J, Su D. Tracking lithiation with transmission electron microscopy. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Mitsuishi K, Nakazawa K, Sagawa R, Shimizu M, Matsumoto H, Shima H, Takewaki T. Direct observation of Cu in high-silica chabazite zeolite by electron ptychography using Wigner distribution deconvolution. Sci Rep 2023; 13:316. [PMID: 36609476 PMCID: PMC9822938 DOI: 10.1038/s41598-023-27452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Direct observation of Cu in Cu-chabazite (CHA) zeolite has been achieved by electron ptychography using the Wigner distribution deconvolution. The imaging properties of ptychographically reconstructed images were evaluated by comparing the intensities of six-membered-ring columns of the zeolite with and without Cu using simulated ptychography images. It was concluded that although false contrast may appear at Cu-free columns for some acquisition conditions, ptychography can discriminate columns with and without Cu. Experimental observation of CHA with and without Cu was performed. Images obtained from the Cu-containing sample showed contrast at the six-membered-rings, while no contrast was observed for the Cu-free sample. The results show that ptychography is a promising technique for visualizing the atomic structures of beam-sensitive materials.
Collapse
Affiliation(s)
- Kazutaka Mitsuishi
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Katsuaki Nakazawa
- International Center for Young Scientists (ICYS), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Ryusuke Sagawa
- JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Masahiko Shimizu
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- Materials Characterization Laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, Japan
| | - Hajime Matsumoto
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
- Materials Characterization Laboratory, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, Japan
| | - Hisashi Shima
- Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, Japan
| | - Takahiko Takewaki
- Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
13
|
Egerton R, Watanabe M. Spatial Resolution in Transmission Electron Microscopy. Micron 2022; 160:103304. [DOI: 10.1016/j.micron.2022.103304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
14
|
Jannis D, Hofer C, Gao C, Xie X, Béché A, Pennycook TJ, Verbeeck J. Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications. Ultramicroscopy 2022; 233:113423. [PMID: 34837737 DOI: 10.1016/j.ultramic.2021.113423] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Four dimensional scanning transmission electron microscopy (4D STEM) records the scattering of electrons in a material in great detail. The benefits offered by 4D STEM are substantial, with the wealth of data it provides facilitating for instance high precision, high electron dose efficiency phase imaging via centre of mass or ptychography based analysis. However the requirement for a 2D image of the scattering to be recorded at each probe position has long placed a severe bottleneck on the speed at which 4D STEM can be performed. Recent advances in camera technology have greatly reduced this bottleneck, with the detection efficiency of direct electron detectors being especially well suited to the technique. However even the fastest frame driven pixelated detectors still significantly limit the scan speed which can be used in 4D STEM, making the resulting data susceptible to drift and hampering its use for low dose beam sensitive applications. Here we report the development of the use of an event driven Timepix3 direct electron camera that allows us to overcome this bottleneck and achieve 4D STEM dwell times down to 100 ns; orders of magnitude faster than what has been possible with frame based readout. We characterize the detector for different acceleration voltages and show that the method is especially well suited for low dose imaging and promises rich datasets without compromising dwell time when compared to conventional STEM imaging.
Collapse
Affiliation(s)
- D Jannis
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - C Hofer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - C Gao
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - X Xie
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - A Béché
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - T J Pennycook
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - J Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
15
|
Zachman MJ, Yang Z, Du Y, Chi M. Robust Atomic-Resolution Imaging of Lithium in Battery Materials by Center-of-Mass Scanning Transmission Electron Microscopy. ACS NANO 2022; 16:1358-1367. [PMID: 35000379 DOI: 10.1021/acsnano.1c09374] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The performance of energy storage materials is often governed by their structure at the atomic scale. Conventional electron microscopy can provide detailed information about materials at these length scales, but direct imaging of light elements such as lithium presents a challenge. While several recent techniques allow lithium columns to be distinguished, these typically either involve complex contrast mechanisms that make image interpretation difficult or require significant expertise to perform. Here, we demonstrate how center-of-mass scanning transmission electron microscopy (CoM-STEM) provides an enhanced ability for simultaneous imaging of lithium and heavier element columns in lithium ion conductors. Through a combination of experiments and multislice electron scattering calculations, we show that CoM-STEM is straightforward to perform and produces directly interpretable contrast for thin samples, while being more robust to variations in experimental parameters than previously demonstrated techniques. As a result, CoM-STEM is positioned to become a reliable and facile method for directly probing all elements within energy storage materials at the atomic scale.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenzhong Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yingge Du
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
16
|
|
17
|
Liu JJ. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-53. [PMID: 34414878 DOI: 10.1017/s1431927621012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.
Collapse
Affiliation(s)
- Jingyue Jimmy Liu
- Department of Physics, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
18
|
Chen T, Foo C, Zheng JJW, Fang H, Nellist P, Tsang SCE. Direct Visualization of Substitutional Li Doping in Supported Pt Nanoparticles and Their Ultra-selective Catalytic Hydrogenation Performance. Chemistry 2021; 27:12041-12046. [PMID: 34159657 DOI: 10.1002/chem.202101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 11/08/2022]
Abstract
It has only recently been established that doping light elements (lithium, boron, and carbon) into supported transition metals can fill interstitial sites, which can be observed by the expanded unit cell. As an example, interstitial lithium (int Li) can block H filling octahedral interstices of palladium metal lattice, which improves partial hydrogenation of alkynes to alkenes under hydrogen. In contrast, herein, we report int Li is not found in the case of Pt/C. Instead, we observe for the first time a direct 'substitution' of Pt with substitutional lithium (sub Li) in alternating atomic columns using scanning transmission electron microscopy-annular dark field (STEM-ADF). This ordered substitutional doping results in a contraction of the unit cell as shown by high-quality synchrotron X-ray diffraction (SXRD). The electron donation of d-band of Pt without higher orbital hybridizations by sub Li offers an alternative way for ultra-selectivity in catalytic hydrogenation of carbonyl compounds by suppressing the facile CO bond breakage that would form alcohols.
Collapse
Affiliation(s)
- Tianyi Chen
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK.,Department of Materials, University of Oxford, OX1 PH, Oxford, UK
| | - Christopher Foo
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| | - Jianwei J W Zheng
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| | - Huihuang Fang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| | - Peter Nellist
- Department of Materials, University of Oxford, OX1 PH, Oxford, UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, OX1 3QR, Oxford, UK
| |
Collapse
|
19
|
O'Leary CM, Martinez GT, Liberti E, Humphry MJ, Kirkland AI, Nellist PD. Contrast transfer and noise considerations in focused-probe electron ptychography. Ultramicroscopy 2020; 221:113189. [PMID: 33360480 DOI: 10.1016/j.ultramic.2020.113189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
Electron ptychography is a 4-D STEM phase-contrast imaging technique with applications to light-element and beam-sensitive materials. Although the electron dose (electrons incident per unit area on the sample) is the primary figure of merit for imaging beam-sensitive materials, it is also necessary to consider the contrast transfer properties of the imaging technique. Here, we explore the contrast transfer properties of electron ptychography. The contrast transfer of focused-probe, non-iterative electron ptychography using the single-side-band (SSB) method is demonstrated experimentally. The band-pass nature of the phase-contrast transfer function (PCTF) for SSB ptychography places strict limitations on the probe convergence semi-angles required to resolve specific sample features with high contrast. The PCTF of the extended ptychographic iterative engine (ePIE) is broader than that for SSB ptychography, although when both high and low spatial frequencies are transferred, band-pass filtering is required to remove image artefacts. Normalisation of the transfer function with respect to the noise level shows that the transfer window is increased while avoiding noise amplification. Avoiding algorithms containing deconvolution steps may also increase the dose-efficiency of ptychographic phase reconstructions.
Collapse
Affiliation(s)
- Colum M O'Leary
- Department of Materials, University of Oxford, Parks Rd, Oxford OX13PH, United Kingdom.
| | - Gerardo T Martinez
- Department of Materials, University of Oxford, Parks Rd, Oxford OX13PH, United Kingdom
| | - Emanuela Liberti
- Department of Materials, University of Oxford, Parks Rd, Oxford OX13PH, United Kingdom; electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Didcot OX11 0DE, United Kingdom
| | - Martin J Humphry
- Phase Focus Ltd, Electric Works, Sheffield Digital Campus, Sheffield S1 2BJ, United Kingdom
| | - Angus I Kirkland
- Department of Materials, University of Oxford, Parks Rd, Oxford OX13PH, United Kingdom; electron Physical Science Imaging Centre (ePSIC), Diamond Light Source, Didcot OX11 0DE, United Kingdom; The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot OX11 0FA, United Kingdom
| | - Peter D Nellist
- Department of Materials, University of Oxford, Parks Rd, Oxford OX13PH, United Kingdom
| |
Collapse
|
20
|
Ultra-high contrast STEM imaging for segmented/pixelated detectors by maximizing the signal-to-noise ratio. Ultramicroscopy 2020; 220:113133. [PMID: 33181363 DOI: 10.1016/j.ultramic.2020.113133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022]
Abstract
Atomic-resolution low-dose imaging for beam-sensitive materials is one of the most challenging topics in electron microscopy research. In this study, we theoretically developed a new scanning transmission electron microscopy (STEM) imaging technique by maximizing the signal-to-noise ratio of an obtainable image under the weak phase object approximation (WPOA), which we will call optimum bright-field (OBF) imaging. OBF images are obtained by processing multiple images acquired by segmented/pixelated detectors through complex frequency filtering. This method has been confirmed through a systematic image simulation to be highly dose-efficient. Furthermore, we experimentally demonstrate the high dose efficiency of the OBF technique by visualizing the atomic structure in a lithium-ion battery material using a high-speed segmented detector. Furthermore, it was shown that OBF imaging is usable for real-time imaging, which makes low-dose observations of beam-sensitive materials much easier to achieve.
Collapse
|
21
|
Abakumov AM, Fedotov SS, Antipov EV, Tarascon JM. Solid state chemistry for developing better metal-ion batteries. Nat Commun 2020; 11:4976. [PMID: 33009387 PMCID: PMC7532470 DOI: 10.1038/s41467-020-18736-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Metal-ion batteries are key enablers in today’s transition from fossil fuels to renewable energy for a better planet with ingeniously designed materials being the technology driver. A central question remains how to wisely manipulate atoms to build attractive structural frameworks of better electrodes and electrolytes for the next generation of batteries. This review explains the underlying chemical principles and discusses progresses made in the rational design of electrodes/solid electrolytes by thoroughly exploiting the interplay between composition, crystal structure and electrochemical properties. We highlight the crucial role of advanced diffraction, imaging and spectroscopic characterization techniques coupled with solid state chemistry approaches for improving functionality of battery materials opening emergent directions for further studies. The development of high performing metal-ion batteries require guidelines to build improved electrodes and electrolytes. Here, the authors review the current state-of-the-art in the rational design of battery materials by exploiting the interplay between composition, crystal structure and electrochemical properties.
Collapse
Affiliation(s)
- Artem M Abakumov
- Skoltech Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, Russia, 121205.
| | - Stanislav S Fedotov
- Skoltech Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
| | - Evgeny V Antipov
- Skoltech Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow, Russia, 121205.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Jean-Marie Tarascon
- Chimie du Solide-Energie, UMR 8260, Collège de France, 75231, Paris Cedex 05, France
| |
Collapse
|
22
|
Zhang C, Feng Y, Han Z, Gao S, Wang M, Wang P. Electrochemical and Structural Analysis in All-Solid-State Lithium Batteries by Analytical Electron Microscopy: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903747. [PMID: 31660670 DOI: 10.1002/adma.201903747] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Advanced scanning transmission electron microscopy (STEM) and its associated instruments have made significant contributions to the characterization of all-solid-state (ASS) Li batteries, as these tools provide localized information on the structure, morphology, chemistry, and electronic state of electrodes, electrolytes, and their interfaces at the nano- and atomic scale. Furthermore, the rapid development of in situ techniques has enabled a deep understanding of interfacial dynamic behavior and heterogeneous characteristics during the cycling process. However, due to the beam-sensitive nature of light elements in the interphases, e.g., Li and O, thorough and reliable studies of the interfacial structure and chemistry at an ultrahigh spatial resolution without beam damage is still a formidable challenge. Herein, the following points are discussed: (1) the recent contributions of advanced STEM to the study of ASS Li batteries; (2) current challenges associated with using this method; and (3) potential opportunities for combining cryo-electron microscopy and the STEM phase contrast imaging techniques.
Collapse
Affiliation(s)
- Chunchen Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuzhang Feng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhen Han
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Si Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Meiyu Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
23
|
Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C, Zhu Y. Imaging Beam-Sensitive Materials by Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907619. [PMID: 32108394 DOI: 10.1002/adma.201907619] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Indexed: 05/15/2023]
Abstract
Electron microscopy allows the extraction of multidimensional spatiotemporally correlated structural information of diverse materials down to atomic resolution, which is essential for figuring out their structure-property relationships. Unfortunately, the high-energy electrons that carry this important information can cause damage by modulating the structures of the materials. This has become a significant problem concerning the recent boost in materials science applications of a wide range of beam-sensitive materials, including metal-organic frameworks, covalent-organic frameworks, organic-inorganic hybrid materials, 2D materials, and zeolites. To this end, developing electron microscopy techniques that minimize the electron beam damage for the extraction of intrinsic structural information turns out to be a compelling but challenging need. This article provides a comprehensive review on the revolutionary strategies toward the electron microscopic imaging of beam-sensitive materials and associated materials science discoveries, based on the principles of electron-matter interaction and mechanisms of electron beam damage. Finally, perspectives and future trends in this field are put forward.
Collapse
Affiliation(s)
- Qiaoli Chen
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Christian Dwyer
- Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA
| | - Guan Sheng
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chongzhi Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonian Li
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changlin Zheng
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200438, China
| | - Yihan Zhu
- Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
24
|
Xu W, Lin H, Wang H, Zhang F. Super-resolution near-field ptychography. OPTICS EXPRESS 2020; 28:5164-5178. [PMID: 32121742 DOI: 10.1364/oe.383986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Compared to far-field ptychography, near-field ptychography can reduce the requirement on the detector dynamic range, while it is able to cover a larger field of view with a fewer number of sample scans. However, its spatial resolution is limited by the detector pixel size. Here, we utilize a pixel-super-resolved approach to overcome this limitation. The method has been applied to four types of experiment configurations using planar and divergent illuminations together with two different cameras with highly contrast specifications. The proposed method works effectively for up-sampling up to 6 times. Meanwhile, it can achieve ∼5.9-fold and ∼3.1-fold resolution improvement over the 6.5-μm and 2.4-μm detector pixel size. We also demonstrate the precisely quantitative phase imaging capability of the method by using a phase resolution target. The presented method is believed to have great potential in X-ray tomography and on-chip flow cytometry.
Collapse
|
25
|
Chen T, Ellis I, Hooper TJN, Liberti E, Ye L, Lo BTW, O'Leary C, Sheader AA, Martinez GT, Jones L, Ho PL, Zhao P, Cookson J, Bishop PT, Chater P, Hanna JV, Nellist P, Tsang SCE. Interstitial Boron Atoms in the Palladium Lattice of an Industrial Type of Nanocatalyst: Properties and Structural Modifications. J Am Chem Soc 2019; 141:19616-19624. [PMID: 31747756 DOI: 10.1021/jacs.9b06120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well-established that the inclusion of small atomic species such as boron (B) in powder metal catalysts can subtly modify catalytic properties, and the associated changes in the metal lattice imply that the B atoms are located in the interstitial sites. However, there is no compelling evidence for the occurrence of interstitial B atoms, and there is a concomitant lack of detailed structural information describing the nature of this occupancy and its effects on the metal host. In this work, we use an innovative combination of high-resolution 11B magic-angle-spinning (MAS) and 105Pd static solid-state NMR nuclear magnetic resonance (NMR), synchrotron X-ray diffraction (SXRD), in situ X-ray pair distribution function (XPDF), scanning transmission electron microscopy-annular dark field imaging (STEM-ADF), electron ptychography, and electron energy loss spectroscopy (EELS) to investigate the B atom positions, properties, and structural modifications to the palladium lattice of an industrial type interstitial boron doped palladium nanoparticle catalyst system (Pd-intB/C NPs). In this study, we report that upon B incorporation into the Pd lattice, the overall face centered cubic (FCC) lattice is maintained; however, short-range disorder is introduced. The 105Pd static solid-state NMR illustrates how different types (and levels) of structural strain and disorder are introduced in the nanoparticle history. These structural distortions can lead to the appearance of small amounts of local hexagonal close packed (HCP) structured material in localized regions. The short-range lattice tailoring of the Pd framework to accommodate interstitial B dopants in the octahedral sites of the distorted FCC structure can be imaged by electron ptychography. This study describes new toolsets that enable the characterization of industrial metal nanocatalysts across length scales from macro- to microanalysis, which gives important guidance to the structure-activity relationship of the system.
Collapse
Affiliation(s)
- Tianyi Chen
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom.,Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Ieuan Ellis
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom.,Johnson Matthey , Blount's Court, Sonning Common , Reading RG4 9NH , United Kingdom
| | - Thomas J N Hooper
- Department of Physics , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Emanuela Liberti
- Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Lin Ye
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom
| | - Benedict T W Lo
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom
| | - Colum O'Leary
- Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Alexandra A Sheader
- Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Gerardo T Martinez
- Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Lewys Jones
- Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Ping-Luen Ho
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom.,Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Pu Zhao
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom
| | - James Cookson
- Johnson Matthey , Blount's Court, Sonning Common , Reading RG4 9NH , United Kingdom
| | - Peter T Bishop
- Johnson Matthey , Blount's Court, Sonning Common , Reading RG4 9NH , United Kingdom
| | - Philip Chater
- Diamond Light Source Ltd. , Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE , United Kingdom
| | - John V Hanna
- Department of Physics , University of Warwick , Coventry CV4 7AL , United Kingdom
| | - Peter Nellist
- Department of Materials , University of Oxford , Oxford OX1 3PH , United Kingdom
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry , University of Oxford , Oxford OX1 3QR , United Kingdom
| |
Collapse
|
26
|
Zachman MJ, Hachtel JA, Idrobo JC, Chi M. Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Zachman
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Jordan A. Hachtel
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
27
|
Zachman MJ, Hachtel JA, Idrobo JC, Chi M. Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angew Chem Int Ed Engl 2019; 59:1384-1396. [PMID: 31081976 DOI: 10.1002/anie.201902993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/01/2019] [Indexed: 11/10/2022]
Abstract
Interfaces play a fundamental role in many areas of chemistry. However, their localized nature requires characterization techniques with high spatial resolution in order to fully understand their structure and properties. State-of-the-art atomic resolution or in situ scanning transmission electron microscopy and electron energy-loss spectroscopy are indispensable tools for characterizing the local structure and chemistry of materials with single-atom resolution, but they are not able to measure many properties that dictate function, such as vibrational modes or charge transfer, and are limited to room-temperature samples containing no liquids. Here, we outline emerging electron microscopy techniques that are allowing these limitations to be overcome and highlight several recent studies that were enabled by these techniques. We then provide a vision for how these techniques can be paired with each other and with in situ methods to deliver new insights into the static and dynamic behavior of functional interfaces.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
28
|
Clark L, Petersen TC, Williams T, Morgan MJ, Paganin DM, Findlay SD. High contrast at low dose using a single, defocussed transmission electron micrograph. Micron 2019; 124:102701. [PMID: 31280007 DOI: 10.1016/j.micron.2019.102701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/28/2022]
Abstract
For many soft-matter specimens, transmission electron microscopists face the double-bind of low contrast images, due to weakly-scattering specimens, alongside severe limits on the electron dose that can be used before the specimen is damaged by the electron beam. The combination of these effects causes the resultant micrographs to have very low signal-to-noise. It is well known that varying the defocus aberration can enhance image contrast in electron microscopy. For single-material objects where the variation of absorption and phase contrast are functions of one another, since both are governed by the variation in thickness profile, we show that the thickness profile can be reconstructed at very low dose. The algorithm, first established in X-ray imaging, requires some a priori information but only a single defocussed image of the region of interest, making it more dose efficient than either a conventional transport-of-intensity phase reconstruction (which would require two images and tends to amplify noise), or an absorption-contrast analysis of a single in-focus image recorded at the same electron dose (which does not benefit from the significant signal-to-noise enhancement of the present algorithm). These findings are presented through both simulations and experimental data.
Collapse
Affiliation(s)
- L Clark
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia.
| | - T C Petersen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - T Williams
- Monash Centre for Electron Microscopy, Monash University, Victoria 3800, Australia
| | - M J Morgan
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - D M Paganin
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - S D Findlay
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| |
Collapse
|
29
|
Ophus C. Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:563-582. [PMID: 31084643 DOI: 10.1017/s1431927619000497] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.
Collapse
Affiliation(s)
- Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory,1 Cyclotron Road, Berkeley, CA,USA
| |
Collapse
|