1
|
Song X, Liu L, Yang H, Chen Y, Huang X, Huang Z, Yang H, Zhang T, Huang Y, Gao HJ, Wang Y. Unusual Geometric and Electronic Structures at Domain Boundaries in a Heterochiral Charge Density Wave Superlattice. ACS NANO 2024. [PMID: 39325018 DOI: 10.1021/acsnano.4c09426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Domain boundaries (DBs) in charge density wave (CDW) systems not only are important for understanding the mechanism of how CDW interplays with other quantum phases but also have potential for future CDW-based nanodevices. However, current research on DBs in CDW materials has been mainly limited to those between homochiral CDW domains, whereas DBs between heterochiral CDW domains, especially in the atomic layers, remain largely unexplored. Here, we have studied the geometric and electronic states of heterochiral DBs in single-layer and bilayer 1T-NbSe2 using scanning tunneling microscopy/spectroscopy. We observe the existence of diverse CDW configurations in a single heterochiral CDW DB with atomic resolution and reveal the corresponding electronic states. In addition, interlayer stacking further enriches the electronic properties of the DB. Our results offer deep insights into the relationship between the detailed CDW nanostructures and electronic behaviors, which has significant implications for DB engineering in strongly correlated CDW systems and related nanodevices.
Collapse
Affiliation(s)
- Xuan Song
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Liwei Liu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yaoyao Chen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyu Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Zeping Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Huixia Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Shi Y, Gong Y, Zhang Y, Li Y, Li X, Tan Z, Fan L. Axially Growing Carbon Quantum Ribbon with 2D Stacking Control for High-Stability Solar Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400817. [PMID: 39031527 PMCID: PMC11425258 DOI: 10.1002/advs.202400817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Indexed: 07/22/2024]
Abstract
Although power conversion efficiency (PCE) of solar cells (SCs) continues to improve, they are still far from practical application because of their complex synthesis process, high cost and inferior operational stability. Carbon quantum dots with high material stability and remarkable photoluminescence are successfully used in light-emitting diodes. A good light emitter should also be an efficient SC according to the photon balance in Shockley-Quieisser formulation, in which all excitons are ultimately separated. However, the finite quantum-sized sp2 domain leads to tight exciton bonding, and highly delocalized electron clouds in irregular molecular stacks form disordered charge transfer, resulting in severe energy loss. Herein, an axially growing carbon quantum ribbon (AG-CQR) with a wide optical absorption range of 440-850 nm is reported. Structural and computational studies reveal that AG-CQRs (aspect ratio ≈2:1) with carbonyl groups at both ends regulate energy level and efficiently separate excitons. The stacking-controlled two-dimensional AG-CQR film further directionally transfers electrons and holes, particularly in AB stacking mode. Using this film as active layer alone, the SCs yield a maximum PCE of 1.22%, impressive long-term operational stability of 380 h, and repeatability. This study opens the door for the development of new-generation carbon-nanomaterial-based SCs for practical applications.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering DepartmentBeijing University of Chemical Technology InstitutionBeijing100029China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering DepartmentBeijing University of Chemical Technology InstitutionBeijing100029China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of EducationCollege of ChemistryBeijing Normal UniversityBeijing100875China
| |
Collapse
|
3
|
Zahmatkeshsaredorahi A, Jakob DS, Xu XG. Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:9813-9827. [PMID: 38919728 PMCID: PMC11194824 DOI: 10.1021/acs.jpcc.4c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Kelvin probe force microscopy (KPFM) is an increasingly popular scanning probe microscopy technique used for nanoscale imaging of surface potential for various materials, such as metals, semiconductors, biological samples, and photovoltaics, to reveal their surface work function and/or local accumulation of charges. This featured review outlines the operation principles and applications of KPFM, including several typical commercially available variants. We highlight the significance of surface potential measurements, present the details of the method operation, and discuss the causes of the limitation on spatial resolution. Then, we present the pulsed force Kelvin probe force microscopy (PF-KPFM) as an innovative improvement to KPFM, which provides an enhanced spatial resolution of <10 nm under ambient conditions. PF-KPFM is promising for the characterization of heterogeneous materials with spatial variations of electrical properties. It will be especially instrumental for investigating emerging perovskite photovoltaics, heterogeneous catalysts, 2D materials, and ferroelectric materials, among others.
Collapse
Affiliation(s)
| | - Devon S. Jakob
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania 18015, United States
| | - Xiaoji G. Xu
- Department
of Chemistry, Lehigh University, 6 E. Packer Ave. Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Chakrabarty S, Jasuja K. Insights into the Unanticipated Chemical Reactivity of Functionalized Nanosheets Derived from TiB 2. Inorg Chem 2024; 63:1524-1536. [PMID: 38064651 DOI: 10.1021/acs.inorgchem.3c03010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Titanium diboride (TiB2) is a member of the AlB2-type layered metal boride family; the materials of this family are receiving renewed research interest owing to their amenability to nanoscaling. Earlier, we showed that TiB2 can be nanoscaled to yield quasi 2D nanostructures following a dissolution-recrystallization approach. This approach yielded nanosheets that were chemically functionalized with oxy-functional groups. Also, these nanosheets could inherently form a gel-like substance. In this work, we show that these functionalized nanosheets can interact with ascorbic acid in a way that first imparts a characteristic orange hue to the original yellowish nanosheet dispersion. Second, this interaction results in the loss of gel-like behavior of the nanosheet dispersion. We utilize several spectroscopic techniques such as UV-visible, FT-IR, NMR, EPR, XPS, and XANES to unravel this unexplored chemical interaction. The findings show that both titania as well as oxy-boron species react with ascorbic acid, leading to a profound modification of the nanosheets. This modification results in an augmented electrochemical response, implying that the modified nanosheets can be used in novel applications. This study is therefore a step toward gaining an even deeper understanding of the chemical opportunities that these nanoscaled borides can provide.
Collapse
Affiliation(s)
- Satadru Chakrabarty
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382055 Gujarat, India
| | - Kabeer Jasuja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382055 Gujarat, India
| |
Collapse
|
5
|
Wang H, Wang S, Zhang S, Zhu M, Ouyang W, Li Q. Deducing the internal interfaces of twisted multilayer graphene via moiré-regulated surface conductivity. Natl Sci Rev 2023; 10:nwad175. [PMID: 37484999 PMCID: PMC10361741 DOI: 10.1093/nsr/nwad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
The stacking state of atomic layers critically determines the physical properties of twisted van der Waals materials. Unfortunately, precise characterization of the stacked interfaces remains a great challenge as they are buried internally. With conductive atomic force microscopy, we show that the moiré superlattice structure formed at the embedded interfaces of small-angle twisted multilayer graphene (tMLG) can noticeably regulate surface conductivity even when the twisted interfaces are 10 atomic layers beneath the surface. Assisted by molecular dynamics (MD) simulations, a theoretical model is proposed to correlate surface conductivity with the sequential stacking state of the graphene layers of tMLG. The theoretical model is then employed to extract the complex structure of a tMLG sample with crystalline defects. Probing and visualizing the internal stacking structures of twisted layered materials is essential for understanding their unique physical properties, and our work offers a powerful tool for this via simple surface conductivity mapping.
Collapse
Affiliation(s)
| | | | | | - Mengzhen Zhu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | | | | |
Collapse
|
6
|
Tan M, Huang C, Yu C, Li C, Yin R, Liu C, Dong W, Meng H, Su Y, Qiao L, Gao L, Lu Q, Bai Y. Unexpected High-Performance Photocatalytic Hydrogen Evolution in Co@NCNT@ZnIn 2 S 4 Triggered by Directional Charge Separation and Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205266. [PMID: 36300917 DOI: 10.1002/smll.202205266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The structural design of photocatalysts is highly related to the separation and transfer of photogenerated carriers, which is essential for the improvement of photocatalytic hydrogen evolution performance. Here, the hybrid photocatalyst M@NCNT@ZIS (M: Fe, Co, Ni; NCNT: nitrogen-doped carbon nanotube; ZIS: ZnIn2 S4 ) with a hierarchical structure is rationally designed and precisely synthesized. The unique hollow structure with a large specific surface area offers abundant reactive sites, thus increasing the adsorption of reactants. Importantly, the properly positioned metal nanoparticles realize the directional charge migration from ZIS to M@NCNT, which significantly improves the efficiency of charge separation. Furthermore, the intimate interface between M@NCNT and ZIS effectively facilitates charge migration by shortening the transfer distance and providing numerous transport channels. As a result, the optimized Co@NCNT@ZIS exhibits a remarkable photocatalytic hydrogen evolution efficiency (43.73 mmol g-1 h-1 ) without Pt as cocatalyst. Experimental characterizations and density functional theory calculations demonstrate that the synergistic effect between hydrogen adsorption and interfacial charge transport is of great significance for improving photocatalytic hydrogen production performance.
Collapse
Affiliation(s)
- Mengxi Tan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cui Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruowei Yin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanbao Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huimin Meng
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
7
|
Li Y, Xue M, Fan H, Gao CF, Shi Y, Liu Y, Watanabe K, Tanguchi T, Zhao Y, Wu F, Wang X, Shi Y, Guo W, Zhang Z, Fei Z, Li J. Symmetry Breaking and Anomalous Conductivity in a Double-Moiré Superlattice. NANO LETTERS 2022; 22:6215-6222. [PMID: 35852915 DOI: 10.1021/acs.nanolett.2c01710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In a two-dimensional moiré superlattice, the atomic reconstruction of constituent layers could introduce significant modifications to the lattice symmetry and electronic structure at small twist angles. Here, we employ conductive atomic force microscopy to investigate a twisted trilayer graphene double-moiré superlattice. Two sets of moiré superlattices are observed. At neighboring domains of the large moiré, the current exhibits either 2- or 6-fold rotational symmetry, indicating delicate symmetry breaking beyond the rigid model. Moreover, an anomalous current appears at the "A-A" stacking site of the larger moiré, contradictory to previous observations on twisted bilayer graphene. Both behaviors can be understood by atomic reconstruction, and we also show that the measured current is dominated by the tip-graphene contact resistance that maps the local work function qualitatively. Our results reveal new insights of atomic reconstruction in novel moiré superlattices and opportunities for manipulating exotic quantum states on the basis of twisted van der Waals heterostructures.
Collapse
Affiliation(s)
- Yuhao Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, People's Republic of China
| | - Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Hua Fan
- Department of Physics, Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| | - Cun-Fa Gao
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, People's Republic of China
| | - Yan Shi
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, People's Republic of China
| | - Yang Liu
- Jinan Institute of Quantum Technology, Jinan 250101, Shandong, People's Republic of China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Tanguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yue Zhao
- Department of Physics, Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| | - Fengcheng Wu
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Xinran Wang
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
| | - Yi Shi
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, Institute for Frontier Science of Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Zaiyao Fei
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, People's Republic of China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
- Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Zhang S, Xu Q, Hou Y, Song A, Ma Y, Gao L, Zhu M, Ma T, Liu L, Feng XQ, Li Q. Domino-like stacking order switching in twisted monolayer-multilayer graphene. NATURE MATERIALS 2022; 21:621-626. [PMID: 35449221 DOI: 10.1038/s41563-022-01232-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Atomic reconstruction has been widely observed in two-dimensional van der Waals structures with small twist angles1-7. This unusual behaviour leads to many novel phenomena, including strong electronic correlation, spontaneous ferromagnetism and topologically protected states1,5,8-14. Nevertheless, atomic reconstruction typically occurs spontaneously, exhibiting only one single stable state. Using conductive atomic force microscopy, here we show that, for small-angle twisted monolayer-multilayer graphene, there exist two metastable reconstruction states with distinct stacking orders and strain soliton structures. More importantly, we demonstrate that these two reconstruction states can be reversibly switched, and the switching can propagate spontaneously in an unusual domino-like fashion. Assisted by lattice-resolved conductive atomic force microscopy imaging and atomistic simulations, the detailed structure of the strain soliton networks has been identified and the associated propagation mechanism is attributed to the strong mechanical coupling among solitons. The fine structure of the bistable states is critical for understanding the unique properties of van der Waals structures with tiny twists, and the switching mechanism offers a viable means for manipulating their stacking states.
Collapse
Affiliation(s)
- Shuai Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Qiang Xu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Yuan Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Aisheng Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Yuan Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Mengzhen Zhu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Tianbao Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Xi-Qiao Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.
| | - Qunyang Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, China.
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Zhang S, Song A, Chen L, Jiang C, Chen C, Gao L, Hou Y, Liu L, Ma T, Wang H, Feng XQ, Li Q. Abnormal conductivity in low-angle twisted bilayer graphene. SCIENCE ADVANCES 2020; 6:6/47/eabc5555. [PMID: 33219028 PMCID: PMC7679157 DOI: 10.1126/sciadv.abc5555] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
Controlling the interlayer twist angle offers a powerful means for tuning the electronic properties of two-dimensional (2D) van der Waals materials. Typically, the electrical conductivity would increase monotonically with decreasing twist angle owing to the enhanced coupling between adjacent layers. Here, we report a nonmonotonic angle-dependent vertical conductivity across the interface of bilayer graphene with low twist angles. More specifically, the vertical conductivity enhances gradually with decreasing twist angle up to a crossover angle at θc ≈ 5°, and then it drops notably upon further decrease in the twist angle. Revealed by density functional theory calculations and scanning tunneling microscopy, the abnormal behavior is attributed to the unusual reduction in average carrier density originating from local atomic reconstruction. The impact of atomic reconstruction on vertical conductivity is unique for low-angle twisted 2D van der Waals materials and provides a strategy for designing and optimizing their electronic performance.
Collapse
Affiliation(s)
- Shuai Zhang
- AML, CNMM, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Aisheng Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Lingxiu Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chengxin Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chen Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yuan Hou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tianbao Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Haomin Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Xi-Qiao Feng
- AML, CNMM, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Qunyang Li
- AML, CNMM, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Chan N, Vazirisereshk MR, Martini A, Egberts P. Insights into dynamic sliding contacts from conductive atomic force microscopy. NANOSCALE ADVANCES 2020; 2:4117-4124. [PMID: 36132756 PMCID: PMC9417200 DOI: 10.1039/d0na00414f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/12/2020] [Indexed: 06/16/2023]
Abstract
Friction in nanoscale contacts is determined by the size and structure of the interface that is hidden between the contacting bodies. One approach to investigating the origins of friction is to measure electrical conductivity as a proxy for contact size and structure. However, the relationships between contact, friction and conductivity are not fully understood, limiting the usefulness of such measurements for interpreting dynamic sliding properties. Here, atomic force microscopy (AFM) was used to simultaneously acquire lattice resolution images of the lateral force and current flow through the tip-sample contact formed between a highly oriented pyrolytic graphite (HOPG) sample and a conductive diamond AFM probe to explore the underlying mechanisms and correlations between friction and conductivity. Both current and lateral force exhibited fluctuations corresponding to the periodicity of the HOPG lattice. Unexpectedly, while lateral force increased during stick events of atomic stick-slip, the current decreased exponentially. Molecular dynamics (MD) simulations of a simple model system reproduced these trends and showed that the origin of the inverse correlation between current and lateral force during atomic stick-slip was atom-atom distance across the contact. The simulations further demonstrated transitions between crystallographic orientation during slip events were reflected in both lateral force and current. These results confirm that the correlation between conduction and atom-atom distance previously proposed for stationary contacts can be extended to sliding contacts in the stick-slip regime.
Collapse
Affiliation(s)
- Nicholas Chan
- Department of Mechanical and Manufacturing Engineering, University of Calgary 2500 Drive NW Calgary Alberta T2N 1N4 Canada
| | - Mohammad R Vazirisereshk
- School of Engineering, University of California Merced 5200N Lake Road Merced California 95343 USA
| | - Ashlie Martini
- School of Engineering, University of California Merced 5200N Lake Road Merced California 95343 USA
| | - Philip Egberts
- Department of Mechanical and Manufacturing Engineering, University of Calgary 2500 Drive NW Calgary Alberta T2N 1N4 Canada
| |
Collapse
|
11
|
Zhang K, Abbas Y, Jan SU, Gao L, Ma Y, Mi Z, Liu X, Xuan Y, Gong JR. Selective Growth of Stacking Fault Free ⟨100⟩ Nanowires on a Polycrystalline Substrate for Energy Conversion Application. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17676-17685. [PMID: 32212680 DOI: 10.1021/acsami.9b20952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cubic semiconductor nanowires grown along ⟨100⟩ directions have been reported to be promising for optoelectronics and energy conversion applications, owing to their pure zinc-blende structure without any stacking fault. But, until date, only limited success has been achieved in growing ⟨100⟩ oriented nanowires. Here we report the selective growth of stacking fault free ⟨100⟩ nanowires on a commercial transparent conductive polycrystalline fluorine-doped SnO2 (FTO) glass substrate via a simple and cost-effective chemical vapor deposition (CVD) method. By means of crystallographic analysis and density functional theory calculation, we prove that the orientation relationship between the Au catalyst and the FTO substrate play a vital role in inducing the selective growth of ⟨100⟩ nanowires, which opens a new pathway for controlling the growth directions of nanowires via the elaborate selection of the catalyst and substrate couples during the vapor-solid-liquid (VLS) growth process. The ZnSe nanowires grown on the FTO substrate are further applied as a photoanode in photoelectrochemical (PEC) water splitting. It exhibits a higher photocurrent than the ZnSe nanowires do without preferential orientations on a Sn-doped In2O3 (ITO) glass substrate, which we believe to be correlated with the smooth transport of charge carriers in ZnSe ⟨100⟩ nanowires with pure zinc-blende structures, in distinct contrast with the severe electron scattering happened at the stacking faults in ZnSe nanowires on the ITO substrate, as well as the efficient charge transfer across the intensively interacting nanowire-substrate interfaces.
Collapse
Affiliation(s)
- Kai Zhang
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yasir Abbas
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Saad Ullah Jan
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuan Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhishan Mi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xianglei Liu
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yimin Xuan
- School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|
12
|
Song A, Gao L, Zhang J, Liu X, Hu YZ, Ma TB, Zheng Q, Luo J. Achieving a superlubricating ohmic sliding electrical contact via a 2D heterointerface: a computational investigation. NANOSCALE 2020; 12:7857-7863. [PMID: 32227006 DOI: 10.1039/c9nr09662k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simultaneously achieving low friction and fine electrical conductance of sliding electrical contacts is a crucial factor but a great challenge for designing high-performance microscale and nanoscale functional devices. Through atomistic simulations, we propose an effective design strategy to obtain both low friction and high conductivity in sliding electrical contacts. By constructing graphene(Gr)/MoS2 two-dimensional (2D) heterojunctions between sliding Cu surfaces, superlubricity can be achieved with a remarkably lowered sliding energy barrier as compared to that of the homogeneous MoS2 lubricated Cu contact. Moreover, by introducing vacancy defects into MoS2 and substituting Cu with active metal Ti, the Schottky and tunneling barriers can be substantially suppressed without losing the superlubricious properties of the tribointerface. Consequently, a high conductivity ohmic contact with low sliding friction could be realized in our proposed Ti-MoS1.5-Gr-Ti system, which provides a potential strategy for tackling the well-known dilemma for high performance sliding electrical contacts.
Collapse
Affiliation(s)
- Aisheng Song
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|