1
|
Chen A, Mesfin JM, Gianneschi NC, Christman KL. Intravascularly Deliverable Biomaterial Platforms for Tissue Repair and Regeneration Post-Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300603. [PMID: 36989469 PMCID: PMC10539487 DOI: 10.1002/adma.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
Each year, nearly 19 million people die of cardiovascular disease with coronary heart disease and myocardial infarction (MI) as the leading cause of the progression of heart failure. Due to the high risk associated with surgical procedures, a variety of minimally invasive therapeutics aimed at tissue repair and regeneration are being developed. While biomaterials delivered via intramyocardial injection have shown promise, there are challenges associated with delivery in acute MI. In contrast, intravascularly injectable biomaterials are a desirable category of therapeutics due to their ability to be delivered immediately post-MI via less invasive methods. In addition to passive diffusion into the infarct, these biomaterials can be designed to target the molecular and cellular characteristics seen in MI pathophysiology, such as cells and proteins present in the ischemic myocardium, to reduce off-target localization. These injectable materials can also be stimuli-responsive through enzymes or chemical imbalances. This review outlines the natural and synthetic biomaterial designs that allow for retention and accumulation within the infarct via intravascular delivery, including intracoronary infusion and intravenous injection.
Collapse
Affiliation(s)
- Alexander Chen
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Joshua M. Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biomedical Engineering, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Karen L. Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
2
|
Huang Y, Li G, Chen Z, Chen M, Zhai W, Li D, Xu Q. Exosomal Drug Delivery Systems: A Novel Therapy Targeting PD-1 in Septic-ALI. Stem Cell Rev Rep 2024:10.1007/s12015-024-10784-6. [PMID: 39235552 DOI: 10.1007/s12015-024-10784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The cytokine storm triggered by sepsis can lead to the development of acute lung injury (ALI). Human umbilical cord Mesenchymal stem cells derived exosomes (HucMSCs-EXOs) have been demonstrated to possess immunosuppressive and anti-inflammatory properties. Programmed cell death receptor 1 (PD-1) plays a crucial role in maintaining the inflammatory immune homeostasis. The aim of this study is to investigate the synergistic therapeutic effect of EXOs loaded with anti-PD-1 peptide on septic-ALI. METHODS This study prepares a novel EXOs-based drug, named MEP, by engineering modification of HucMSCs-EXOs, which are non-immunogenic extracellular vesicles, loaded with anti-PD-1 peptide. The therapeutic effect and potential mechanism of MEP on septic-ALI are elucidated through in vivo and in vitro experiments, providing experimental evidence for the treatment of septic acute lung injury with MEP. RESULTS We found that, compared to individual components (anti-PD-1 peptide or EXOs), MEP treatment can more effectively improve the lung injury index of septic-ALI mice, significantly reduce the expression levels of inflammatory markers CRP and PCT, as well as pro-inflammatory cytokines TNF-α and IL-1β in serum, decrease lung cell apoptosis, and significantly increase the expression of anti-inflammatory cytokine IL-10 and CD68+ macrophages. In vitro, MEP co-culture promotes the proliferation of CD206+ macrophages, increases the M2/M1 macrophage ratio, and attenuates the inflammatory response. GEO data analysis and qRT-PCR validation show that MEP reduces the expression of inflammasome-related genes and M1 macrophage marker iNOS. CONCLUSION In both in vitro and in vivo settings, MEP demonstrates superior therapeutic efficacy compared to individual components in the context of septic-ALI.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Zeqi Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Weibin Zhai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
3
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: mechanisms to clinical impact. Matrix Biol 2024:S0945-053X(24)00110-0. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
4
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
5
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
6
|
Jiang Y, Wei ZY, Song ZF, Qian HY. Platelet-inspired targeting delivery for coronary heart disease. Heliyon 2024; 10:e27166. [PMID: 38449604 PMCID: PMC10915553 DOI: 10.1016/j.heliyon.2024.e27166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Platelets play a pivotal role in many physiological and pathological processes, with their special targeting/adhering properties towards infarcted myocardium, injured or dysfunctional endothelium, and growing thrombus. Leveraging the site-targeting/adhering property, a variety of platelet-inspired targeting delivery(PITD)designs have been developed, the majority of which are reached by hitchhiking live platelets, cloaking nanoparticles with platelet membranes and mimicking platelet functions. With PITD, drugs or regenerative cells can directly reach targeted sites with minimized systematical distribution thus being of great clinical benefits. Coronary heart disease (CHD) is a major health burden worldwide. Plenty of PITD designs have shown promising outcomes for the treatment of CHD in preclinical models, especially in thrombolysis and post-percutaneous coronary intervention (post-PCI) anti-restenosis. Besides, PITD applications in cardiac protection and atherosclerotic plaque imaging are also under investigation. What's more, the potential benefits of PITD in the field of cell-based therapy are also attracting growing attention since it may resolve the problem of low arriving and retention efficiency, which are also particularly discussed in this review. In brief, our focus is putting on PITD strategies designed for the treatment of CHD, which hopefully can facilitate further optimization of this direction.
Collapse
Affiliation(s)
| | | | | | - Hai-Yan Qian
- Center for Coronary Heart Disease, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Feng W, Teng Y, Zhong Q, Zhang Y, Zhang J, Zhao P, Chen G, Wang C, Liang XJ, Ou C. Biomimetic Grapefruit-Derived Extracellular Vesicles for Safe and Targeted Delivery of Sodium Thiosulfate against Vascular Calcification. ACS NANO 2023; 17:24773-24789. [PMID: 38055864 PMCID: PMC10753875 DOI: 10.1021/acsnano.3c05261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.
Collapse
Affiliation(s)
- Weijing Feng
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
- Department
of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong
Provincial Key Laboratory of Cardiac Function and Microcirculation,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yintong Teng
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Qingping Zhong
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Yangmei Zhang
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| | - Jianwu Zhang
- Department
of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong
Provincial Key Laboratory of Cardiac Function and Microcirculation,
Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- NMPA
Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong
Provincial Key Laboratory of New Drug Screening, Guangdong Provincial
Key Laboratory of Cardiac Function and Microcirculation, School of
Pharmaceutical Sciences, Southern Medical
University, Guangzhou 510515, China
| | - Guoqing Chen
- Cardiology
Department of Panyu Central Hospital and Cardiovascular Disease Institute
of Panyu District, Guangzhou 511400, China
| | - Chunming Wang
- Institute
of Chinese Medical Sciences & State Key Laboratory of Quality
Research in Chinese Medicine, University
of Macau, Macau 00000, SAR, China
| | - Xing-Jie Liang
- Chinese Academy
of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key
Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Caiwen Ou
- The
Tenth Affiliated Hospital of Southern Medical University (Dongguan
People’s Hospital), Southern Medical University or The First
School of Clinical Medicine, Southern Medical
University, Dongguan 523018, China
| |
Collapse
|
8
|
Sarakpi T, Mesic A, Speer T. Leukocyte-endothelial interaction in CKD. Clin Kidney J 2023; 16:1845-1860. [PMID: 37915921 PMCID: PMC10616504 DOI: 10.1093/ckj/sfad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic kidney disease (CKD) represents an independent risk factor for cardiovascular diseases (CVD). Accordingly, CKD patients show a substantial increased risk of cardiovascular mortality. Inflammation represents an important link between CKD and CVD. The interaction between endothelial cells and effector cells of the innate immune system plays a central role in the development and progression of inflammation. Vascular injury causes endothelial dysfunction, leading to augmented oxidative stress, increased expression of leukocyte adhesion molecules and chronic inflammation. CKD induces numerous metabolic changes, creating a uremic milieu resulting in the accumulation of various uremic toxins. These toxins lead to vascular injury, endothelial dysfunction and activation of the innate immune system. Recent studies describe CKD-dependent changes in monocytes that promote endothelial dysfunction and thus CKD progression and CKD-associated CVD. The NLR family pyrin domain containing 3-interleukin-1β-interleukin-6 (NLRP3-IL-1β-IL-6) signaling pathway plays a pivotal role in the development and progression of CVD and CKD alike. Several clinical trials are investigating targeted inhibition of this pathway indicating that anti-inflammatory therapeutic strategies may emerge as novel approaches in patients at high cardiovascular risk and nonresolving inflammation. CKD patients in particular would benefit from targeted anti-inflammatory therapy, since conventional therapeutic regimens have limited efficacy in this population.
Collapse
Affiliation(s)
- Tamim Sarakpi
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Armir Mesic
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Thimoteus Speer
- Department of Internal Medicine 4 – Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
11
|
Han D, Wang F, Qiao Z, Wang B, Zhang Y, Jiang Q, Liu M, Zhuang Y, An Q, Bai Y, Shangguan J, Zhang J, Liang G, Shen D. Neutrophil membrane-camouflaged nanoparticles alleviate inflammation and promote angiogenesis in ischemic myocardial injury. Bioact Mater 2023; 23:369-382. [DOI: 10.1016/j.bioactmat.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
|
12
|
PTN-PTPRZ1 signaling axis blocking mediates tumor microenvironment remodeling for enhanced glioblastoma treatment. J Control Release 2023; 353:63-76. [PMID: 36402232 DOI: 10.1016/j.jconrel.2022.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with a poor prognosis that is highly heterogeneous and invasive. One of the most major challenges of GBM treatment in the clinic is the blood-brain barrier (BBB). Additionally, the tumor microenvironment (TME) is highly enriched with immunosuppressed M2-like tumor-associated macrophages (M2 TAMs) and glioblastoma stem cells (GSCs), which promoted the malignancy of GBM through the PTN-PTPRZ1 signaling axis. Here, we developed a self-assembled dual-targeted hybrid micelle (DT-GM1) as a nanocarrier to deliver the chemotherapeutic agent doxorubicin (DOX). We demonstrated that this DT-GM1/DOX can cross the BBB using in vitro and in vivo GBM models, and that M2pep and PTPRZ1 antibodies allow it to precisely target the tumor microenvironment where M2 TAMs and GSCs are enriched, increasing intracellular drug accumulation via multiple internalization pathways. Additionally, simultaneous elimination of M2 TAMs and GSCs blocked the PTN-PTPRZ1 signaling axis, resulting in less M2 TAM infiltration and increased polarization to the M1 phenotype, reshaping the immune microenvironment. Overall, we have established a nanocarrier that can penetrate the BBB and target the TME while also synergizing with GBM chemotherapeutic agents, providing a promising new strategy for GBM treatment.
Collapse
|
13
|
Wang Z, Popowski KD, Zhu D, de Juan Abad BL, Wang X, Liu M, Lutz H, De Naeyer N, DeMarco CT, Denny TN, Dinh PUC, Li Z, Cheng K. Exosomes decorated with a recombinant SARS-CoV-2 receptor-binding domain as an inhalable COVID-19 vaccine. Nat Biomed Eng 2022; 6:791-805. [PMID: 35788687 PMCID: PMC10782831 DOI: 10.1038/s41551-022-00902-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
The first two mRNA vaccines against infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that were approved by regulators require a cold chain and were designed to elicit systemic immunity via intramuscular injection. Here we report the design and preclinical testing of an inhalable virus-like-particle as a COVID-19 vaccine that, after lyophilisation, is stable at room temperature for over three months. The vaccine consists of a recombinant SARS-CoV-2 receptor-binding domain (RBD) conjugated to lung-derived exosomes which, with respect to liposomes, enhance the retention of the RBD in both the mucus-lined respiratory airway and in lung parenchyma. In mice, the vaccine elicited RBD-specific IgG antibodies, mucosal IgA responses and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile in the animals' lungs, and cleared them of SARS-CoV-2 pseudovirus after a challenge. In hamsters, two doses of the vaccine attenuated severe pneumonia and reduced inflammatory infiltrates after a challenge with live SARS-CoV-2. Inhalable and room-temperature-stable virus-like particles may become promising vaccine candidates.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | | | - Xianyun Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Nicole De Naeyer
- Immunology and Virology Quality Assessment Center, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - C Todd DeMarco
- Immunology and Virology Quality Assessment Center, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Thomas N Denny
- Immunology and Virology Quality Assessment Center, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA.
- Department of Pulmonary and Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care Medicine, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, China.
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA.
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Kang IS, Kwon K. Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease. BMB Rep 2022. [PMID: 34903320 PMCID: PMC8810547 DOI: 10.5483/bmbrep.2022.55.1.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.
Collapse
Affiliation(s)
- In Sook Kang
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Kihwan Kwon
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
15
|
Sarathkumar E, Victor M, Menon JA, Jibin K, Padmini S, Jayasree RS. Nanotechnology in cardiac stem cell therapy: cell modulation, imaging and gene delivery. RSC Adv 2021; 11:34572-34588. [PMID: 35494731 PMCID: PMC9043027 DOI: 10.1039/d1ra06404e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
The wide arena of applications opened by nanotechnology is multidimensional. It is already been proven that its prominence can continuously influence human life. The role of stem cells in curing degenerative diseases is another major area of research. Cardiovascular diseases are one of the major causes of death globally. Nanotechnology-assisted stem cell therapy could be used to tackle the challenges faced in the management of cardiovascular diseases. In spite of the positive indications and proven potential of stem cells to differentiate into cardiomyocytes for cardiac repair and regeneration during myocardial infarction, this therapeutic approach still remains in its infancy due to several factors such as non-specificity of injected cells, insignificant survival rate, and low cell retention. Attempts to improve stem cell therapy using nanoparticles have shown some interest among researchers. This review focuses on the major hurdles associated with cardiac stem cell therapy and the role of nanoparticles to overcome the major challenges in this field, including cell modulation, imaging, tracking and gene delivery. This review summarizes the potential challenges present in cardiac stem cell therapy and the major role of nanotechnology to overcome these challenges including cell modulation, tracking and imaging of stem cells.![]()
Collapse
Affiliation(s)
- Elangovan Sarathkumar
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Marina Victor
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | | | - Kunnumpurathu Jibin
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| | - Suresh Padmini
- Sree Narayana Institute of Medical Sciences Kochi Kerala India
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing Trivandrum India
| |
Collapse
|
16
|
Yao J, Huang K, Zhu D, Chen T, Jiang Y, Zhang J, Mi L, Xuan H, Hu S, Li J, Zhou Y, Cheng K. A Minimally Invasive Exosome Spray Repairs Heart after Myocardial Infarction. ACS NANO 2021; 15:11099-11111. [PMID: 34152126 DOI: 10.1021/acsnano.1c00628] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Myocardial infarction (MI) remains the most common cause of death worldwide. Many MI survivors will suffer from recurrent heart failure (HF), which has been recognized as a determinant of adverse prognosis. Despite the success of improved early survival after MI by primary percutaneous coronary intervention, HF after MI is becoming the major driver of late morbidity, mortality, and healthcare costs. The development of regenerative medicine has brought hope to MI treatment in the past decade. Mesenchymal stem cell (MSC)-derived exosomes have been established as an essential part of stem cell paracrine factors for heart regeneration. However, its regenerative power is hampered by low delivery efficiency to the heart. We designed, fabricated, and tested a minimally invasive exosome spray (EXOS) based on MSC exosomes and biomaterials. In a mouse model of acute myocardial infarction, EXOS improved cardiac function and reduced fibrosis, and promoted endogenous angiomyogenesis in the post-injury heart. We further tested the feasibility and safety of EXOS in a pig model. Our results indicate that EXOS is a promising strategy to deliver therapeutic exosomes for heart repair.
Collapse
Affiliation(s)
- Jialu Yao
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Tan Chen
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Yufeng Jiang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Junyi Zhang
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Lijie Mi
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - He Xuan
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou 215000, China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
17
|
Liu M, López de Juan Abad B, Cheng K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev 2021; 173:504-519. [PMID: 33831476 PMCID: PMC8299409 DOI: 10.1016/j.addr.2021.03.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Cardiac fibrosis remains an unresolved problem in heart diseases. After initial injury, cardiac fibroblasts (CFs) are activated and subsequently differentiate into myofibroblasts (myoFbs) that are major mediator cells in the pathological remodeling. MyoFbs exhibit proliferative and secretive characteristics, and contribute to extracellular matrix (ECM) turnover, collagen deposition. The persistent functions of myoFbs lead to fibrotic scars and cardiac dysfunction. The anti-fibrotic treatment is hindered by the elusive mechanism of fibrosis and lack of specific targets on myoFbs. In this review, we will outline the progress of cardiac fibrosis and its contributions to the heart failure. We will also shed light on the role of myoFbs in the regulation of adverse remodeling. The communication between myoFbs and other cells that are involved in the heart injury and repair respectively will be reviewed in detail. Then, recently developed therapeutic strategies to treat fibrosis will be summarized such as i) chimeric antigen receptor T cell (CAR-T) therapy with an optimal target on myoFbs, ii) direct reprogramming from stem cells to quiescent CFs, iii) "off-target" small molecular drugs. The application of nano/micro technology will be discussed as well, which is involved in the construction of cell-based biomimic platforms and "pleiotropic" drug delivery systems.
Collapse
Affiliation(s)
- Mengrui Liu
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA.
| |
Collapse
|
18
|
Li J, Hu S, Cheng K. Engineering better stem cell therapies for treating heart diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:569. [PMID: 32775370 PMCID: PMC7347786 DOI: 10.21037/atm.2020.03.44] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For decades, stem cells and their byproducts have shown efficacy in repairing tissues and organs in numerous pre-clinical studies and some clinical trials, providing hope for possible cures for many important diseases. However, the translation of stem cell therapy for heart diseases from bench to bed is still hampered by several limitations. The therapeutic benefits of stem cells are mediated by a combo of mechanisms. In this review, we will provide a brief summary of stem cell therapies for ischemic heart disease. Basically, we will talk about these barriers for the clinical application of stem cell-based therapies, the investigation of mechanisms behind stem-cell based cardiac regeneration and also, what bioengineers can do and have been doing on the translational stage of stem cell therapies for heart repair.
Collapse
Affiliation(s)
- Junlang Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA.,Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, Raleigh, NC, USA
| |
Collapse
|
19
|
Peng H, Qin YT, He XW, Li WY, Zhang YK. Epitope Molecularly Imprinted Polymer Nanoparticles for Chemo-/Photodynamic Synergistic Cancer Therapy Guided by Targeted Fluorescence Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13360-13370. [PMID: 32101405 DOI: 10.1021/acsami.0c00468] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is a still tough task to precisely target cancer cells and efficiently improve the therapeutic efficacy of various therapies at the same time. Here, dual-template imprinting polymer nanoparticles (MIPs) with a core-shell structure were prepared, in which fluorescent silica nanoparticles (FSiO2) were the core and the imprinted polymer layers were the outermost shell. The imprinted layer was designed and constructed via free-radical precipitation approach on the surface of FSiO2, which simultaneously encapsulated gadolinium-doped silicon quantum dots and photosensitizers (Ce6). During the polymerization process, two template molecules were introduced into the mixtures, one was the epitope of CD59 protein (YNCPNPTADCK), which was overexpressed on the surface of a great deal of the solid cancers, and the other was antitumor agent doxorubicin (DOX) to be used for chemotherapy. Furthermore, the embedded Ce6 could generate toxic 1O2 under 655 nm laser irradiation to kill cancer cells, combining with the loaded-DOX to obtain a synergistic cancer therapy. Moreover, owing to the introduction of gadolinium-doped silicon quantum dots, Ce6, and DOX, the MIPs were endowed with targeted fluorescence imaging (FI) and MR imaging (MRI). In vitro and in vivo experiments had been conducted to demonstrate the excellent targeting ability and desirable treatment effect with negligible toxicity to healthy tissues and organs. As a consequence, the designed MIPs can promote the development of targeted recognition against biomarkers and precise treatment guided with cell imaging tools.
Collapse
Affiliation(s)
- Hui Peng
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Ya-Ting Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
20
|
Li Z, Hu S, Huang K, Su T, Cores J, Cheng K. Targeted anti-IL-1β platelet microparticles for cardiac detoxing and repair. SCIENCE ADVANCES 2020; 6:eaay0589. [PMID: 32076644 PMCID: PMC7002120 DOI: 10.1126/sciadv.aay0589] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
An acute myocardial infarction (AMI) induces a sterile inflammatory response that facilitates further heart injury and promotes adverse cardiac remodeling. Interleukin-1β (IL-1β) plays a central role in the sterile inflammatory response that results from AMI. Thus, IL-1β blockage is a promising strategy for treatment of AMI. However, conventional IL-1β blockers lack targeting specificity. This increases the risk of serious side effects. To address this problem herein, we fabricated platelet microparticles (PMs) armed with anti-IL-1β antibodies to neutralize IL-1β after AMI and to prevent adverse cardiac remodeling. Our results indicate that the infarct-targeting PMs could bind to the injured heart, increasing the number of anti-IL-1β antibodies therein. The anti-IL-1β platelet PMs (IL1-PMs) protect the cardiomyocytes from apoptosis by neutralizing IL-1β and decreasing IL-1β-driven caspase-3 activity. Our findings indicate that IL1-PM is a promising cardiac detoxification agent that removes cytotoxic IL-1β during AMI and induces therapeutic cardiac repair.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Jhon Cores
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
Fan C, Zhang E, Joshi J, Yang J, Zhang J, Zhu W. Utilization of Human Induced Pluripotent Stem Cells for Cardiac Repair. Front Cell Dev Biol 2020; 8:36. [PMID: 32117968 PMCID: PMC7025514 DOI: 10.3389/fcell.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/15/2020] [Indexed: 12/18/2022] Open
Abstract
The paracrine effect, mediated by chemical signals that induce a physiological response on neighboring cells in the same tissue, is an important regenerative mechanism for stem cell-based therapy. Exosomes are cell-secreted nanovesicles (50–120 nm) of endosomal origin, and have been demonstrated to be a major contributor to the observed stem cell-mediated paracrine effect in the cardiac repair process. Following cardiac injury, exosomes deriving from exogenous stem cells have been shown to regulate cell apoptosis, proliferation, angiogenesis, and fibrosis in the infarcted heart. Exosomes also play a crucial role in the intercellular communication between donor and recipient cells. Human induced pluripotent stem cells (hiPSCs) are promising cell sources for autologous cell therapy in regenerative medicine. Here, we review recent advances in the field of progenitor-cell derived, exosome-based cardiac repair, with special emphasis on exosomes derived from hiPSCs.
Collapse
Affiliation(s)
- Chengming Fan
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Eric Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jyotsna Joshi
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, United States
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Medicine, Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
22
|
Stine SJ, Popowski KD, Su T, Cheng K. Exosome and Biomimetic Nanoparticle Therapies for Cardiac Regenerative Medicine. Curr Stem Cell Res Ther 2020; 15:674-684. [PMID: 32148200 PMCID: PMC7805022 DOI: 10.2174/1574888x15666200309143924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
Exosomes and biomimetic nanoparticles have great potential to develop into a wide-scale therapeutic platform within the regenerative medicine industry. Exosomes, a subgroup of EVs with diameter ranging from 30-100 nm, have recently gained attention as an innovative approach for the treatment of various diseases, including heart disease. Their beneficial factors and regenerative properties can be contrasted with various cell types. Various biomimetic nanoparticles have also emerged as a unique platform in regenerative medicine. Biomimetic nanoparticles are a drug delivery platform, which have the ability to contain both biological and fabricated components to improve therapeutic efficiency and targeting. The novelty of these platforms holds promise for future clinical translation upon further investigation. In order for both exosome therapeutics and biomimetic nanoparticles to translate into large-scale clinical treatment, numerous factors must first be considered and improved. Standardization of different protocols, from exosome isolation to storage conditions, must be optimized to ensure batches are pure. Standardization is also important to ensure no variability in this process across studies, thus making it easier to interpret data across different disease models and treatments. Expansion of clinical trials incorporating both biomimetic nanoparticles and exosomes will require a standardization of fabrication and isolation techniques, as well as stricter regulations to ensure reproducibility across various studies and disease models. This review will summarize current research on exosome therapeutics and the application of biomimetic nanoparticles in cardiac regenerative medicine, as well as applications for exosome expansion and delivery on a large clinical scale.
Collapse
Affiliation(s)
- Sydney J. Stine
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Kristen D. Popowski
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
| | - Teng Su
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
23
|
Lutz H, Hu S, Dinh PU, Cheng K. Cells and cell derivatives as drug carriers for targeted delivery. MEDICINE IN DRUG DISCOVERY 2019; 3:100014. [PMID: 38596257 PMCID: PMC11003759 DOI: 10.1016/j.medidd.2020.100014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For over a century, researchers have focused on how to optimize drug delivery. Systemic administration means that the drug becomes dilute and has the potential to diffuse to all tissues, which is only until the immune system steps in and rapidly clears it from blood circulation. Drug carriers are the solution for amplifying the intended effect and diminishing side effects. With drug carriers, tissue-specific drug delivery and controlled drug release is possible. Thus far, both synthetic and non-synthetic carriers exist. However, due to the numerous limitations of synthetic carriers, science has begun to concentrate on using live cells and cell-derivatives as drug carriers. The most problematic shortcomings of synthetic carriers are their limited biocompatibility and biodegradability. Most synthetic carriers are cytotoxic or induce immune responses. Moreover, synthetic carriers typically depend on passive diffusion and risk phagocytosis, further reducing their impact. On the other hand, live-cell carriers and their derivatives usually have a targeting mechanism and drug release is controlled, increasing the efficiency with which a drug accumulates and acts on a tissue. Still, both types of carriers face similar problems, including achieving high loading capacity, maintaining drug quality, efficiently accumulating in the target tissue, and minimizing side effects. This review aims to elucidate the advantages and disadvantages of each popular cell or cell-derived carrier and to spotlight novel solutions.
Collapse
Affiliation(s)
- Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, United States
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27607, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
24
|
Ferraris VA. Commentary: Searching for the golden fleece-How do you repair damaged myocardium? J Thorac Cardiovasc Surg 2019; 159:2273-2274. [PMID: 31420149 DOI: 10.1016/j.jtcvs.2019.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/30/2022]
|
25
|
Abstract
Cardiovascular disease (CVD) is a major health problem worldwide. Since adult cardiomyocytes irreversibly withdraw from the cell cycle soon after birth, it is hard for cardiac cells to proliferate and regenerate after myocardial injury, such as that caused myocardial infarction (MI). Live cell-based therapies, which we term as first generation of therapeutic strategies, have been widely used for the treatment of many diseases, including CVD. However, cellular approaches have the problems of poor retention of the transplanted cells and the significant entrapment of the cells in the lungs when delivered intravenously. Another big problem is the low storage/shipping stability of live cells, which limits the manufacturability of living cell products. The field of chemical engineering focuses on designing large-scale processes to convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. By definition, chemical engineers conceive and design processes to produce, transform, and transport materials. This matches the direction that cell therapies are heading toward: "produce", from live cells to synthetic artificial cells; "transform", from bare cells to cell/matrix/factor combinations; and "transport". from simple systemic injections to targeted delivery. Thus, we hereby introduce the "chemical engineering of cell therapies" as a concept. In this Account, we summarize our recent efforts to develop chemical engineering approaches to repair injured hearts. To address the limitations of poor cellular retention and integration, the first step was the artificial manipulation of stem cells before injections (we term this the second generation of therapeutic strategies). For example, we took advantage of the natural infarct-targeting ability of platelet membranes by fusing them onto the surface of cardiac stromal/stem cells (CSCs). By doing so, we improved the rate at which they were delivered through the vasculature to sites of MI. In addition to modifying natural CSCs, we described a bioengineering approach that involved the encapsulation of CSCs in a polymeric microneedle patch for myocardium regeneration. The painless microneedle patches were used as an in situ delivery device, which directly transported the loaded CSCs to the MI heart. In addition to low cell retention, there are some other barriers that need to be addressed before further clinical application is viable, including the storage/shipping stability of and the evident safety concerns about live cells. Therefore, we developed the third generation of therapeutic strategies, which utilize cell-free approaches for cardiac cell therapies. Numerous studies have indicated that paracrine mechanisms reasonably explain stem cell based heart repair. By imitating or adapting natural stem cells, as well as their secretions, and using them in conjunction with biocompatible materials, we can simulate the function of natural stem cells while avoiding the complications association with the first and second generation therapeutic options. Additionally, we can develop approaches to capture endogenous stem cells and directly transport them to the infarct site. Using these third generation therapeutic strategies, we can provide unprecedented opportunities for cardiac cell therapies. We hope that our designs will promote the use of chemical engineering approaches to transform, transport, and fabricate cell-free systems as novel cardiac cell therapeutic agents for clinical applications.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|