1
|
Tang K, Wang J, Pei X, Zhu Z, Liu J, Wan Q, Zhang X. Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants. Adv Colloid Interface Sci 2025; 335:103358. [PMID: 39591835 DOI: 10.1016/j.cis.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The use of biomedical implants in surgical techniques promotes the restoration of lost tissue or organ physiological functions in the body. The interface between different materials determines their interactions and ultimately affects the physicochemical properties of biomedical implants. After implantation, the biointerface plays a crucial role in determining the biocompatibility and functionality of biomedical implants. Surface modification of biomaterials by developing novel biomaterials like various flexible coatings to meet the requirements of biointerfaces, such as mechanical performance, compatibility safety, and biological activities, can improve material-biological interactions by maintaining its original volumetric characteristics. Hydrogels possess excellent plasticity, biodegradability, biocompatibility, and extracellular-matrix-like properties, making them widely used in the biomedical field. Moreover, due to their unique three-dimensional crosslinked hydrophilic network, hydrogels can encapsulate a variety of materials, such as small molecules, polymers, and particle. In recent years, it has been proved that coating biomedical implant materials with flexible hydrogels can optimize the biointerface and holds vast potential for implant surface modification. In this review, we first discussed the potential requirements of the biointerface on the surface of implantable materials in both in vitro and in vivo biological microenvironments. Based on these comprehensive reviews, we also introduced the potential applications of hydrogels in both in vitro and in vivo settings. Finally, this review focused on the challenges faced by the biointerface of implantable materials constructed based on hydrogels and proposed future approaches to inspire researchers with new ideas.
Collapse
Affiliation(s)
- Kun Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Zhang G, Pan R, Lai S, Liang J, Wang S, Wu S, Yu B, Zeng R. Phosphatidylserine-functional polydimethylsiloxane substrates regulate macrophage M2 polarization via modulus-dependent NF-κB/PPARγ pathway. BIOMATERIALS ADVANCES 2024; 165:213997. [PMID: 39167903 DOI: 10.1016/j.bioadv.2024.213997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Macrophages, highly plastic innate immune cells, critically influence the success of implantable devices by responding to biochemical and physical cues. However, the mechanisms underlying their synergistic regulation of macrophage polarization on implant surfaces remain poorly understood. Therefore, we constructed anti-inflammatory phosphatidylserine (PS) modified polydimethylsiloxane (PDMS) substrates with low, medium, and high modulus (1-100 kPa) to investigate the combined effects and underlying mechanisms of substrate modulus and biochemical signal on macrophage polarization. The introduction of PS on the PDMS surface not only significantly enhanced the polarization of M0 to M2 but also potently suppressed lipopolysaccharide (LPS)-induced M1 activation, with this effect further potentiated by a reduction in substrate modulus. In vivo subcutaneous implantation experiments also corroborated the synergistic effect of PS functionalization and low modulus PDMS in inhibiting M1 activation and promoting M2 polarization. Notably, reduced modulus led to decreased integrin αV/β3 clustering and cytoskeletal protein aggregation, ultimately diminishing YAP activation and nuclear translocation. Concomitantly, this disruption of the Piezo1-cytoskeletal protein positive feedback loop resulted in reduced p65/IκB phosphorylation and inflammation, while concurrently promoting PPARγ expression. Overall, our findings underscore the pivotal role of substrate modulus in modulating PS-mediated biomaterial-cell interactions, synergistically potentiating PS-induced M2 macrophage polarization, thus paving the way for the design of advanced immunomodulatory biomaterials.
Collapse
Affiliation(s)
- Guanglin Zhang
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China; Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Ruyi Pan
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| | - Shuimin Lai
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| | - Jiahao Liang
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| | - Shuoqi Wang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shuang Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Baiyin Yu
- College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, PR China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
4
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Hu D, Li T, Bian H, Liu H, Wang P, Wang Y, Sun J. Silk films with distinct surface topography modulate plasma membrane curvature to polarize macrophages. Mater Today Bio 2024; 28:101193. [PMID: 39221204 PMCID: PMC11364906 DOI: 10.1016/j.mtbio.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The physical properties of a biomaterial play a vital role in modulating macrophage polarization. However, discerning the specific effects of individual parameters can be intricate due to their interdependencies, limiting the mechanism underlying a specific parameter on the polarization of macrophages. Here, we engineered silk fibroin (SF) films with tunable surface roughness while maintaining similar physical properties by combining casting and salting out techniques. We demonstrate that increased surface roughness in SF films promotes M2-like macrophage polarization, characterized by enhanced secretion of anti-inflammatory cytokines. Transcriptomic analysis unveils the modulation of genes associated with extracellular matrix-cell interactions, highlighting the role of surface topography in regulating cellular processes. Mechanistically, we show that surface roughness induces macrophage membrane curvature, facilitating integrin αv endocytosis and thereby inhibiting the integrin-NF-kB signaling pathway. In vivo implantation assays corroborate that rough SF films substantially mitigate early inflammatory responses. This work establishes a direct link between surface roughness and intracellular signaling in macrophages, adding to our understanding of the biomaterial surface effect at the material-cell interface and bringing insights into material design.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Haixu Bian
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haiyu Liu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Pengwei Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
6
|
Zhang D, Li M, Chen S, Du H, Zhong H, Wu J, Liu F, Zhang Q, Peng F, Liu X, Yeung KWK. Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404485. [PMID: 38760003 DOI: 10.1002/adma.202404485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design-a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co-transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen-loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD-like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.
Collapse
Affiliation(s)
- Dongdong Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Mei Li
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuhan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huihui Du
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, 510009, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Feihong Liu
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qian Zhang
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Feng Peng
- Medical Research Institute, Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| |
Collapse
|
7
|
Civantos A, Mesa-Restrepo A, Torres Y, Shetty AR, Cheng MK, Jaramillo-Correa C, Aditya T, Allain JP. Nanotextured porous titanium scaffolds by argon ion irradiation: Toward conformal nanopatterning and improved implant osseointegration. J Biomed Mater Res A 2023; 111:1850-1865. [PMID: 37334879 DOI: 10.1002/jbm.a.37582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Stress shielding and osseointegration are two main challenges in bone regeneration, which have been targeted successfully by chemical and physical surface modification methods. Direct irradiation synthesis (DIS) is an energetic ion irradiation method that generates self-organized nanopatterns conformal to the surface of materials with complex geometries (e.g., pores on a material surface). This work exposes porous titanium samples to energetic argon ions generating nanopatterning between and inside pores. The unique porous architected titanium (Ti) structure is achieved by mixing Ti powder with given amounts of spacer NaCl particles (vol % equal to 30%, 40%, 50%, 60%, and 70%), compacted and sintered, and combined with DIS to generate a porous Ti with bone-like mechanical properties and hierarchical topography to enhance Ti osseointegration. The porosity percentages range between 25% and 30% using 30 vol % NaCl space-holder (SH) volume percentages to porosity rates of 63%-68% with SH volume of 70 vol % NaCl. Stable and reproducible nanopatterning on the flat surface between pores, inside pits, and along the internal pore walls are achieved, for the first time on any porous biomaterial. Nanoscale features were observed in the form of nanowalls and nanopeaks of lengths between 100 and 500 nm, thicknesses of 35-nm and heights between 100 and 200 nm on average. Bulk mechanical properties that mimic bone-like structures were observed along with increased wettability (by reducing contact values). Nano features were cell biocompatible and enhanced in vitro pre-osteoblast differentiation and mineralization. Higher alkaline phosphatase levels and increased calcium deposits were observed on irradiated 50 vol % NaCl samples at 7 and 14 days. After 24 h, nanopatterned porous samples decreased the number of attached macrophages and the formation of foreign body giant cells, confirming nanoscale tunability of M1-M2 immuno-activation with enhanced osseointegration.
Collapse
Affiliation(s)
- Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Yadir Torres
- Department of Engineering and Materials Science and Transport, University of Seville, Seville, Spain
| | - Akshath R Shetty
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ming Kit Cheng
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Camilo Jaramillo-Correa
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Teresa Aditya
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jean Paul Allain
- Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick Holonyak, Jr., Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- The Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania, USA
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| |
Collapse
|
8
|
Liu S, Liu W, Yang Q, Yang S, Yang Y, Fan L, Zhang Y, Qi B, Shi Z, Wei X, Zhu L, Li T. Non-Coding-RNA-Activated Core/Chitosan Shell Nanounits Coated with Polyetheretherketone for Promoting Bone Regeneration and Osseointegration via Osteoimmunology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12653-12668. [PMID: 36868875 DOI: 10.1021/acsami.2c19186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bone implant outcome and bone regeneration properties can be improved by the immunomodulation of exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs), which contain cytokines, signaling lipids, and regulatory miRNAs. Analysis of miRNAs in BMSCs-derived exosomes showed that miR-21a-5p exhibited the highest expression and was associated with the NF-κB pathway. Hence, we developed an implant with miR-21a-5p functionality to promote bone incorporation by immunoregulation. Mediated by the potent interaction between tannic acid (TA) and biomacromolecules, the tannic acid modified mesoporous bioactive glass nanoparticles coated with miR-21a-5p (miR-21a-5p@T-MBGNs) were reversibly attached to TA-modified polyetheretherketone (T-PEEK). Cocultured cells could phagocytose miR-21a-5p@T-MBGNs slowly released from miR-21a-5p@T-MBGNs loaded T-PEEK (miMT-PEEK). Moreover, miMT-PEEK boosted macrophage M2 polarization via the NF-κB pathway to increase BMSCs osteogenic differentiation. In vivo testing of miMT-PEEK in the rat air-pouch model and rat femoral drilling model indicated effective macrophage M2 polarization, new bone formation, and excellent osseointegration. Overall, the osteoimmunomodulation of the miR-21a-5p@T-MBGNs-functionalized implant promoted osteogenesis and osseointegration.
Collapse
Affiliation(s)
- Shencai Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Weilu Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qinfeng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Sheng Yang
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yusheng Yang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lei Fan
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yili Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210023, China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Zhanjun Shi
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100124, China
| | - Tao Li
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
9
|
Liu X, Zhang H, Yan B, Yeung KWK, Liao Y, Ouyang L, Liu X. On-Off Phagocytosis and Switchable Macrophage Activation Stimulated with NIR for Infected Percutaneous Tissue Repair of Polypyrrole-Coated Sulfonated PEEK. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205048. [PMID: 36515274 PMCID: PMC9929275 DOI: 10.1002/advs.202205048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Intelligent control of the immune response is essential for obtaining percutaneous implants with good sterilization and tissue repair abilities. In this study, polypyrrole (Ppy) nanoparticles enveloping a 3D frame of sulfonated polyether ether ketone (SP) surface are constructed, which enhance the surface modulus and hardness of the sulfonated layer by forming a cooperative structure of simulated reinforced concrete and exhibit a superior photothermal effect. Ppy-coated SP could quickly accumulate heat on the surface by responding to 808 nm near-infrared (NIR) light, thereby killing bacteria, and destroying biofilms. Under NIR stimulation, the phagocytosis and M1 activation of macrophages cultured on Ppy-coated SP are enhanced by activating complement 3 and its receptor, CD11b. Phagocytosis and M1 activation are impaired along with abolishment of NIR stimulation in the Ppy-coated SP group, which is favorable for tissue repair. Ppy-coated SP promotes Collagen-I, vascular endothelial growth factor, connective tissue growth factor, and α-actin (Acta2) expression by inducing M2 polarization owing to its higher surface modulus. Overall, Ppy-coated SP with enhanced mechanical properties could be a good candidate for clinical percutaneous implants through on-off phagocytosis and switchable macrophage activation stimulated with NIR.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| | - Bangcheng Yan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Kelvin W. K. Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic TraumaGuangdong Engineering Technology Research Center for Orthopaedic Trauma RepairDepartment of Orthopaedics and TraumatologyThe University of Hong Kong Shenzhen HospitalShenzhen518053China
| | - Yun Liao
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Liping Ouyang
- Department of PharmacyTongren HospitalShanghai Jiao Tong University School of MedicineShanghai200336China
- Hongqiao International Institute of MedicineShanghai Jiao Tong University School of MedicineShanghai200336China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024China
| |
Collapse
|
10
|
Zhang W, Xia S, Weng T, Yang M, Shao J, Zhang M, Wang J, Xu P, Wei J, Jin R, Yu M, Zhang Z, Han C, Wang X. Antibacterial coaxial hydro-membranes accelerate diabetic wound healing by tuning surface immunomodulatory functions. Mater Today Bio 2022; 16:100395. [PMID: 36042855 PMCID: PMC9420385 DOI: 10.1016/j.mtbio.2022.100395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
Diabetic foot ulcers, typical non-healing wounds, represent a severe clinical problem. Advanced glycation end-products (AGEs), which create a prolonged pro-inflammatory micro-environment in defective sites, can be responsible for refractoriness of these ulcers. Macrophages are polarized to the M2 phenotype to facilitate the transition from a pro-inflammatory microenvironment to an anti-inflammatory microenvironment, which has been demonstrated to be an effective way to accelerate diabetic wound closure. Herein, we developed coaxial hydro-membranes mimicking the extracellular matrix structure that are capable of anti-inflammatory and antibacterial functions for diabetic wound repair. These fibrous membranes maintain a moist microenvironment to support cell proliferation. Macrophages grow in an elongated shape on the surface of the fibrous membranes. The fibrous membranes effectively impaired macrophage AGE-induced M1 polarization and induced macrophage polarization towards the M2 phenotype. The effects of the fibrous membranes on the interactions between macrophages and repair cells under a diabetic condition were also investigated. Furthermore, in vivo results from a full-thickness diabetic wound model confirmed the potential of the coaxial hydro-membranes to accelerate wound healing. This study's results indicate that the developed bioactive anti-inflammatory and antibacterial wound dressing can affect AGE-induced macrophage activation and crosstalk between macrophages and fibroblasts for treating diabetic wounds.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Sizhan Xia
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Tingting Weng
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Min Yang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Jiaming Shao
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Manjia Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jialiang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Pengqing Xu
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Jintao Wei
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
- Department of Emergency Medicine, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- Institute of Emergency Medicine, Zhejiang University, Hangzhou, 310000, China
- Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Jiefang Road 88, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Meirong Yu
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Zhongtao Zhang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Chunmao Han
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
| | - Xingang Wang
- Department of Burns and Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- The Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310000, China
- Corresponding author. Department of Burns & Wound Care Center, the Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
11
|
Lan G, Chu X, Li C, Zhang C, Miao G, Li W, Peng F, Zhao X, Li M. Surface modification of titanium with antibacterial porous N-halamine coating to prevent peri-implant infection. Biomed Mater 2022; 18. [PMID: 36317281 DOI: 10.1088/1748-605x/ac9e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Peri-implant infection remains one of the greatest threats to orthopedics. The construction of bone implants with good antibacterial and osteogenic properties is beneficial for reducing the risk of implant-related infections and healing bone defects. In this study, N-halamine coating (namely N-Cl) was grafted onto alkali-heat treated titanium (Ti) using polydopamine to endow Ti-based orthopedic implants with strong bactericidal activity. Surface characterization revealed that the N-Cl coating has porous structure loaded with active chlorine (Cl+). The N-Cl coating also provided micro/nano-structured Ti surfaces with excellent antibacterial ability via transformation between N-H and N-Cl, and approximately 100% disinfection was achieved. Furthermore, the as-prepared N-Cl coating exhibited good biocompatibility and osteogenesis abilityin vitro. These results indicate that applying N-Cl coatings on Ti could prevent and treat peri-implant infections.
Collapse
Affiliation(s)
- Guobo Lan
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Xiao Chu
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China.,Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chaohui Li
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Chi Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Guiqiang Miao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Wenyong Li
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| | - Xiaodong Zhao
- Department of Orthopedics, Foshan Fosun Chancheng Hospital, Foshan 528010, People's Republic of China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, People's Republic of China
| |
Collapse
|
12
|
Nadine S, Correia CR, Mano JF. Engineering immunomodulatory hydrogels and cell-laden systems towards bone regeneration. BIOMATERIALS ADVANCES 2022; 140:213058. [PMID: 35933955 DOI: 10.1016/j.bioadv.2022.213058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The well-known synergetic interplay between the skeletal and immune systems has changed the design of advanced bone tissue engineering strategies. The immune system is essential during the bone lifetime, with macrophages playing multiple roles in bone healing and biomaterial integration. If in the past, the most valuable aspect of implants was to avoid immune responses of the host, nowadays, it is well-established how important are the crosstalks between immune cells and bone-engineered niches for an efficient regenerative process to occur. For that, it is essential to recapitulate the multiphenotypic cellular environment of bone tissue when designing new approaches. Indeed, the lack of osteoimmunomodulatory knowledge may be the explanation for the poor translation of biomaterials into clinical practice. Thus, smarter hydrogels incorporating immunomodulatory bioactive factors, stem cells, and immune cells are being proposed to develop a new generation of bone tissue engineering strategies. This review highlights the power of immune cells to upgrade the development of innovative engineered strategies, mainly focusing on orthopaedic and dental applications.
Collapse
Affiliation(s)
- Sara Nadine
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Tailored Extracellular Vesicles: Novel Tool for Tissue Regeneration. Stem Cells Int 2022; 2022:7695078. [PMID: 35915850 PMCID: PMC9338735 DOI: 10.1155/2022/7695078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an essential part in multiple pathophysiological processes including tissue injury and regeneration because of their inherent characteristics of small size, low immunogenicity and toxicity, and capability of carrying a variety of bioactive molecules and mediating intercellular communication. Nevertheless, accumulating studies have shown that the application of EVs faces many challenges such as insufficient therapeutic efficacy, a lack of targeting capability, low yield, and rapid clearance from the body. It is known that EVs can be engineered, modified, and designed to encapsulate therapeutic cargos like proteins, peptides, nucleic acids, and drugs to improve their therapeutic efficacy. Targeted peptides, antibodies, aptamers, magnetic nanoparticles, and proteins are introduced to modify various cell-derived EVs for increasing targeting ability. In addition, extracellular vesicle mimetics (EMs) and self-assembly EV-mimicking nanocomplex are applied to improve production and simplify EV purification process. The combination of EVs with biomaterials like hydrogel, and scaffolds dressing endows EVs with long-term therapeutic efficacy and synergistically enhanced regenerative outcome. Thus, we will summarize recent developments of EV modification strategies for more extraordinary regenerative effect in various tissue injury repair. Subsequently, opportunities and challenges of promoting the clinical application of engineered EVs will be discussed.
Collapse
|
14
|
Chen B, Zhang H, Qiu J, Wang S, Ouyang L, Qiao Y, Liu X. Mechanical Force Induced Self-Assembly of Chinese Herbal Hydrogel with Synergistic Effects of Antibacterial Activity and Immune Regulation for Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201766. [PMID: 35491505 DOI: 10.1002/smll.202201766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Skin wounds, especially infected chronic wounds, have attracted worldwide attention due to the high prevalence and poor treatment outcomes. Hydrogel dressings with antibacterial ability and immune regulation property are urgently required. Herein, inspired by the grinding treatment of traditional Chinese medicine, mechanical force is introduced to promote the effective molecular collision and accelerate the self-assembly of chitosan (CS) and puerarin (PUE) for fabricating Chinese-herb-based hydrogels. The antibacterial rate of CS@PUE (C@P) hydrogel is more than 95%, and the wound closed rate is twice that of the control group. Interestingly, the rational design of C@P hydrogels with different PUE ratios enables a refined control over hydrogel formation, nanofiber appearance, viscoelastic, physicochemical, and biological properties. The extraordinary antibacterial ability of C@P hydrogels may originate from the nanofiber structure and the improved zeta potential on account of the orientation of amino groups in CS . Thus, the synergistically antibacterial and immune regulation properties of C@P hydrogels kill bacteria and relieve inflammation in the wound bed, ensuring the anti-infection effect, and boosting wound healing. In addition to providing a universal mechanosynthesis of PUE-based hydrogel for wound healing, this finding is expected to increase the attention paid to Chinese herbal medicines in the construction of biomaterials.
Collapse
Affiliation(s)
- Baohui Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Shaoyun Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, P. R. China
| | - Liping Ouyang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Cixi Center of Biomaterial Surface Engineering, Ningbo, 315300, P. R. China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Cixi Center of Biomaterial Surface Engineering, Ningbo, 315300, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
15
|
He Y, Yao M, Zhou J, Xie J, Liang C, Yin D, Huang S, Zhang Y, Peng F, Cheng S. Mg(OH)2 nanosheets on Ti with immunomodulatory function for orthopedic applications. Regen Biomater 2022; 9:rbac027. [PMID: 35592137 PMCID: PMC9113411 DOI: 10.1093/rb/rbac027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Macrophages play a vital role for guiding the fate of osteogenesis-related cells. It is well known that nano-topography and bioactive ions can direct enhance osteogenic behavior. However, the effects of nanostructure combined with bioactive ions release on macrophage polarization and the following osteogenesis and angiogenesis are rarely reported. Herein, Mg(OH)2 films with nano-sheet structures were constructed on the surface of Ti using hydrothermal treatment. The film presented nano-sheet topography and sustained release of Mg ions. The results of in vitro culture of BMDMs, including PCR, western blot, and flow cytometry suggested that the nano-Mg(OH)2 films were more favorable for macrophages polarizing to tissue healing M2 phenotype. Moreover, air-pouch model confirmed that the nano-Mg(OH)2 film coated Ti would induce milder inflammation and thinner fibrous layer in vivo, compared with untreated Ti. Furthermore, macrophages-conditioned culture mediums were collected from nano-Mg(OH)2 coated Ti group was superior for the osteogenic behaviors of mice bone marrow stem cells and the angiogenic behaviors of human umbilical vein endothelial cells. With harmonious early inflammatory response and subsequently improved osteogenesis and angiogenesis, the nano-Mg(OH)2 coated Ti is promising for orthopedic applications.
Collapse
Affiliation(s)
- Yue He
- School of medicine, South china university of technology, Guangzhou, 510006, China
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mengyu Yao
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jielong Zhou
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Juning Xie
- School of medicine, South china university of technology, Guangzhou, 510006, China
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Changxiang Liang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Dong Yin
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shuaihao Huang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yu Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of medicine, South china university of technology, Guangzhou, 510006, China
| | - Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shi Cheng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
16
|
Tuning the surface potential to reprogram immune microenvironment for bone regeneration. Biomaterials 2022; 282:121408. [DOI: 10.1016/j.biomaterials.2022.121408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
17
|
Wang T, Bai J, Lu M, Huang C, Geng D, Chen G, Wang L, Qi J, Cui W, Deng L. Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nat Commun 2022; 13:160. [PMID: 35013289 PMCID: PMC8748715 DOI: 10.1038/s41467-021-27816-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/07/2021] [Indexed: 01/10/2023] Open
Abstract
Immune response and new tissue formation are important aspects of tissue repair. However, only a single aspect is generally considered in previous biomedical interventions, and the synergistic effect is unclear. Here, a dual-effect coating with immobilized immunomodulatory metal ions (e.g., Zn2+) and osteoinductive growth factors (e.g., BMP-2 peptide) is designed via mussel adhesion-mediated ion coordination and molecular clicking strategy. Compared to the bare TiO2 group, Zn2+ can increase M2 macrophage recruitment by up to 92.5% in vivo and upregulate the expression of M2 cytokine IL-10 by 84.5%; while the dual-effect of Zn2+ and BMP-2 peptide can increase M2 macrophages recruitment by up to 124.7% in vivo and upregulate the expression of M2 cytokine IL-10 by 171%. These benefits eventually significantly enhance bone-implant mechanical fixation (203.3 N) and new bone ingrowth (82.1%) compared to the bare TiO2 (98.6 N and 45.1%, respectively). Taken together, the dual-effect coating can be utilized to synergistically modulate the osteoimmune microenvironment at the bone-implant interface, enhancing bone regeneration for successful implantation. Immune response and new tissue formation are important aspects of tissue repair but often only one aspect is considered in biomedical interventions. Here, the authors report on the use of a mussel-like surface coating to immobilize immune modulating metal ions and growth factors and demonstrated improved in vivo outcomes.
Collapse
Affiliation(s)
- Tao Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China.,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, P. R. China.,Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, 314000, Jiaxing, P. R. China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, P. R. China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Chenglong Huang
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, 314000, Jiaxing, P. R. China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, P. R. China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The second Affiliated Hospital of Jiaxing University, 1518 North Huancheng Road, 314000, Jiaxing, P. R. China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China
| | - Jin Qi
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China.
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, 200025, Shanghai, P. R. China.
| |
Collapse
|
18
|
Yang X, Zhang C, Zhang T, Xiao J. Cobalt-doped Ti surface promotes immunomodulation. Biomed Mater 2021; 17. [PMID: 34942605 DOI: 10.1088/1748-605x/ac4612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Here, cobalt-doped plasma electrolytic oxidation (PEO) coatings with different cobalt contents were prepared on Ti implants. The cobalt ions in the PEO coating exhibited a slow and sustainable release and thus showed excellent biocompatibility and enhanced cell adhesion. In vitro ELISA and RT-PCR assays demonstrated that the cobalt-loaded Ti showed immunomodulatory functions to macrophages and upregulated the expression of anti-inflammatory (M1 type) genes and downregulated expression levels of pro-inflammatory (M2 type) genes compared with that of pure Ti sample. High cobalt content induced increased macrophage polarization into the M2 type. Furthermore, the findings from the in vivo air pouch model suggested that cobalt-loaded Ti could mitigate inflammatory reactions. The present work provides a novel strategy to exploit the immunomodulatory functions of implant materials.
Collapse
Affiliation(s)
- Xiaoming Yang
- Fujian Medical University Affiliated First Quanzhou Hospital, 248~252, East Street, Licheng District, Quanzhou, Fujian, 362000, CHINA
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, Guangdong, 510080, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, 1838 North, Guangzhou Avenue, Guangzhou, 510010, CHINA
| | - Jin Xiao
- Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, 510080, CHINA
| |
Collapse
|
19
|
Liu X, Ouyang L, Chen L, Qiao Y, Ma X, Xu G, Liu X. Hydroxyapatite composited PEEK with 3D porous surface enhances osteoblast differentiation through mediating NO by macrophage. Regen Biomater 2021; 9:rbab076. [PMID: 35480864 PMCID: PMC9039504 DOI: 10.1093/rb/rbab076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
The adverse immune response mediated by macrophages is one of the main factors that are prone to lead poor osseointegration of polyetheretherketone (PEEK) implants in clinic. Hence, endowing PEEK with immunomodulatory ability to avoid the adverse immune response becomes a promising strategy to promote bone repair. In this work, sulfonation and hydrothermal treatment were used to fabricate a 3D porous surface on PEEK and hydroxyapatite (HA) composited PEEK. The HA composited PEEK with 3D porous surface inhibited macrophages polarizing to M1 phenotype and downregulated inducible nitric oxide synthase protein expression, which led to a nitric oxide concentration reduction in culture medium of mouse bone marrow mesenchymal stem cells (mBMSCs) under co-culture condition. The decrease of nitric oxide concentration could help to increase bone formation-related OSX and ALP genes expressions and decrease bone resorption-related MMP-9 and MMP-13 genes expressions via cAMP-PKA-RUNX2 pathway in mBMSCs. In summary, the HA composited PEEK with 3D porous surface has the potential to promote osteogenesis of PEEK through immunomodulation, which provides a promising strategy to improve the bone repair ability of PEEK.
Collapse
Affiliation(s)
- Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Liping Ouyang
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Lan Chen
- School of Materials Science, and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Science Avenue 100, Zhengzhou 450001, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Xiaohan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Wenwei Road 345, Ningbo 315300, China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Naval Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Dingxi Road 1295, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
- Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Wenwei Road 345, Ningbo 315300, China
| |
Collapse
|
20
|
Williams DF. Biocompatibility pathways and mechanisms for bioactive materials: The bioactivity zone. Bioact Mater 2021; 10:306-322. [PMID: 34901548 PMCID: PMC8636667 DOI: 10.1016/j.bioactmat.2021.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/14/2022] Open
Abstract
This essay analyzes the scientific evidence that forms the basis of bioactive materials, covering the fundamental understanding of bioactivity phenomena and correlation with the mechanisms of biocompatibility of biomaterials. This is a detailed assessment of performance in areas such as bone-induction, cell adhesion, immunomodulation, thrombogenicity and antimicrobial behavior. Bioactivity is the modulation of biological activity by characteristics of the interfacial region that incorporates the material surface and the immediate local host tissue. Although the term ‘bioactive material’ is widely used and has a well understood general meaning, it would be useful now to concentrate on this interfacial region, considered as ‘the bioactivity zone’. Bioactivity phenomena are either due to topographical/micromechanical characteristics, or to biologically active species that are presented in the bioactivity zone. Examples of topographical/micromechanical effects are the modulation of the osteoblast – osteoclast balance, nanotopographical regulation of cell adhesion, and bactericidal nanostructures. Regulation of bioactivity by biologically active species include their influence, especially of metal ions, on signaling pathways in bone formation, the role of cell adhesion molecules and bioactive peptides in cell attachment, macrophage polarization by immunoregulatory molecules and antimicrobial peptides. While much experimental data exists to demonstrate the potential of such phenomena, there are considerable barriers to their effective clinical translation. This essay shows that there is solid scientific evidence of the existence of bioactivity mechanisms that are associated with some types of biomaterials, especially when the material is modified in a manner designed to specifically induce that activity.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, 391 Technology Way. Winston-Salem, North Carolina, 27101, USA
| |
Collapse
|
21
|
Peng F, Qiu L, Yao M, Liu L, Zheng Y, Wu S, Ruan Q, Liu X, Zhang Y, Li M, Chu PK. A lithium-doped surface inspires immunomodulatory functions for enhanced osteointegration through PI3K/AKT signaling axis regulation. Biomater Sci 2021; 9:8202-8220. [PMID: 34727152 DOI: 10.1039/d1bm01075a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The response of immune systems is crucial to the success of biomedical implants in vivo and in particular, orthopedic implants must possess appropriate immunomodulatory functions to allow sufficient osteointegration. In this work, lithium (Li) is incorporated into titanium (Ti) implants by plasma electrolytic oxidation to realize slow and sustained release of Li ions. In vitro cellular behaviors of mice bone marrow derived macrophages (BMDMs), including gene expression, cytokine secretion, and surface marker analysis suggest that a low dose of Li incorporation could enhance the recruitment of BMDMs, restrict pro-inflammatory polarization (M1 phenotype), and promote anti-inflammatory polarization (M2 phenotype). The in vivo air pouch implantation model is constructed to simulate the microenvironment associated with aseptic loosening and the histology results confirm that a small dose of Li could relieve inflammatory reactions surrounding the implants. Moreover, compared to the Li-free group, the macrophage-conditioned culture medium (MCM) from Li-doped samples is more beneficial for the osteogenic differentiation of the mouse embryo cell line (C3H10T1/2) and angiogenesis of human umbilical vein endothelial cells (HUVECs), which is further confirmed by better osteointegration ability in the bone implantation model of Li-incorporating Ti implants. Furthermore, the molecular mechanism study discloses that osteoimmunomodulatory activity of Li-incorporating Ti implants is achieved by regulating the cascade molecules in the PI3K/AKT signalling pathway. This work reveals that favorable immune-modulated osteogenesis and osseointegration of bone implants can be realized by the incorporation of Li which broadens the strategy to develop the next generation of immunomodulatory biomaterials.
Collapse
Affiliation(s)
- Feng Peng
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China. .,Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Longhai Qiu
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Mengyu Yao
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Lidan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yufeng Zheng
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China. .,School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Qingdong Ruan
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yu Zhang
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Mei Li
- Department of Orthopedics, Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
22
|
Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater 2021; 133:58-73. [PMID: 33882355 DOI: 10.1016/j.actbio.2021.04.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
As the focus of implantable biomaterials has shifted from bioinert implants to bioactive designs, recent research has highlighted the complex interactions between cell physiologic systems and material properties, particularly physical cues. From the cells known to interact with implanted biomaterials, the response of the immune system has been a critical target of study recently. Here, we review studies characterizing the response of innate immune cells to various material cues, particularly of those at the surface of implanted materials.The innate immune system consists of cell types with various roles in inflammation. Neutrophils and macrophages serve both phagocytic and signaling roles, especially early in the inflammatory phase of biomaterial implantation. These cell types ultimately dictate the outcome of implants as chronic inflammation, fibrosis, or integration. Other cell types like dendritic cells, mast cells, natural killer cells, and innate lymphoid cells may also serve an immunomodulatory role in the biomaterial context. This review highlights recent advances in our understanding of the role of innate immunity in the response to implantable biomaterials as well as key mechanobiological findings in innate immune cells underpinning these advances. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in the understanding of the role of innate immunity in the response to implantable biomaterials, especially in neutrophils and macrophages, as well as key mechanobiological findings in innate immune cells underpinning these advances. Here we discuss how physicochemical properties of biomaterials control innate immune cell behavior.
Collapse
|
23
|
Yao M, Cheng S, Zhong G, Zhou J, Shao H, Ma L, Du C, Peng F, Zhang Y. Enhanced osteogenesis of titanium with nano-Mg(OH) 2 film and a mechanism study via whole genome expression analysis. Bioact Mater 2021; 6:2729-2741. [PMID: 33665504 PMCID: PMC7895731 DOI: 10.1016/j.bioactmat.2021.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Titanium (Ti) has been the most widely used orthopedic implant in the past decades. However, their inert surface often leads to insufficient osteointegration of Ti implant. To solve this issue, two bioactive Mg(OH)2 films were developed on Ti surfaces using hydrothermal treatment (Ti-M1# and Ti-M2#). The Mg(OH)2 films showed nano-flake structures: sheets on Ti-M1# with a thickness of 14.7 ± 0.7 nm and a length of 131.5 ± 2.9 nm, and on Ti-M2# with a thickness of 13.4 ± 2.2 nm and a length of 56.9 ± 5.6 nm. Both films worked as Mg ions releasing platforms. With the gradual degradation of Mg(OH)2 films, weakly alkaline microenvironments will be established surrounding the modified implants. Benefiting from the sustained release of Mg ions, nanostructures, and weakly alkaline microenvironments, the as-prepared nano-Mg(OH)2 coated Ti showed better in vitro and in vivo osteogenesis. Notably, Ti-M2# showed better osteogenesis than Ti-M1#, which can be ascribed to its smaller nanostructure. Moreover, whole genome expression analysis was applied to study the osteogenic mechanism of nano-Mg(OH)2 films. For both coated samples, most of the genes related to ECM-receptor interaction, focal adhesion, and TGF-β pathways were upregulated, indicating that these signaling pathways were activated, leading to better osteogenesis. Furthermore, cells cultured on Ti-M2# showed markedly upregulated BMP-4 gene expression, suggesting that the nanostructure with Mg ion release ability can better activate BMP-4 related signaling pathways, resulting in better osteogenesis. Nano-Mg(OH)2 films demonstrated a superior osteogenesis and are promising surface modification strategy for orthopedic applications.
Collapse
Affiliation(s)
- Mengyu Yao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Guoqing Zhong
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Hongwei Shao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author.
| | - Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Corresponding author.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
- Corresponding author.
| |
Collapse
|
24
|
Liu F, Wang X, Li S, Liao Y, Zhan X, Tao A, Zheng F, Li H, Su Y, Jiang J, Li C. Strontium-Loaded Nanotubes of Ti-24Nb-4Zr-8Sn Alloys for Biomedical Implantation. J Biomed Nanotechnol 2021; 17:1812-1823. [PMID: 34688326 DOI: 10.1166/jbn.2021.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloys, with a relatively low elastic modulus and unique mechanical properties, are desirable materials for oral implantation. In the current study, a multifaceted strontium-incorporating nanotube coating was fabricated on a Ti2448 alloy (Ti2-NTSr) through anodization and hydrothermal procedures. In vitro, the Ti2-NTSr specimens demonstrated better osteogenic properties and more favorable osteoimmunomodulatory abilities. Moreover, macrophages on Ti2-NTSr specimens could improve the recruitment and osteogenic differentiation of osteoblasts. In vivo, dense clots with highly branched, thin fibrins and small pores existed on the Ti2-NTSr implant in the early stage after surgery. Analysis of the deposition of Ca and P elements, hard tissue slices and the bone-implant contact rate (BIC%) of the Ti2-NTSr implants also showed superior osseointegration. Taken together, these results demonstrate that the Ti2-NTSr coating may maximize the clinical outcomes of Ti2448 alloys for implantation applications.
Collapse
Affiliation(s)
- Fei Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinyu Wang
- Jiamusi University Affiliated Stomatological Hospital, Heilongjiang Key Laboratory of Oral Biomedical Materials and Clinical Application, Jiamusi, 154000, China
| | - Shujun Li
- Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yiheng Liao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Anqi Tao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yucheng Su
- Dental Implant Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
25
|
Biological activity of titania coating prepared with zirconium oxychloride and titania on zirconia surface. J Mech Behav Biomed Mater 2021; 123:104780. [PMID: 34416536 DOI: 10.1016/j.jmbbm.2021.104780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
Zirconia is recognized as a promising dental implant material because of its good biocompatibility, sufficient mechanical strength, minimal ion release and aesthetic effects similar to natural teeth. However, the limitations of inert surface of zirconia affect the long-term efficacy of zirconia implants. To enhance the osseointegration of zirconia implants, titania (TiO2) coating is prepared on the zirconia surface by immersion in a mixed zirconium oxychloride (ZrOCl2) and TiO2 suspension in a water bath. The surface and longitudinal section morphology are observed by scanning electron microscopy (SEM). The chemical composition is evaluated through energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The roughness and hydrophilicity of zirconia surface are also examined. A three-point bending test is conducted on the samples to explore the effect of this surface treatment on the mechanical strength of zirconia. Vickers hardness measurements are performed to evaluate the gradient change of the longitudinal section of the zirconia substrate. The MC3T3-E1 cells are seeded on zirconia discs, and a LIVE/DEAD double-staining test is conducted to detect the cytotoxicity of the TiO2 coating. The cell morphology is studied through fluorescence microscope. The degrees of cell proliferation, mineralization and alkaline phosphatase (ALP) activity are calculated and compared. Detection of the mRNA expression of osteogenic differentiation-related markers is performed by RT-PCR. A TiO2 coating is generated on the zirconia surface and significantly improves the surface roughness and hydrophilicity while not adversely affecting the mechanical strength of zirconia. The hardness of the zirconia substrate shows a gradient change. The TiO2 coating can promote proliferation, spreading and osteogenic differentiation of MC3T3-E1 cells. These findings suggest that modifying the surface of zirconia with a TiO2 coating may have a favourable osteogenic effect.
Collapse
|
26
|
Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004393. [PMID: 34166584 PMCID: PMC8373130 DOI: 10.1002/advs.202004393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human-made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge-transfer regulating or monitoring abilities. Furthermore, three major charge-transfer controlling systems, including wired, self-activated, and stimuli-responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Yongfeng Mei
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
27
|
Wang Y, Fan Y, Liu H. Macrophage Polarization in Response to Biomaterials for Vascularization. Ann Biomed Eng 2021; 49:1992-2005. [PMID: 34282494 DOI: 10.1007/s10439-021-02832-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022]
Abstract
Vascularization of tissue engineering constructs is an urgent need for delivering oxygen and nutrients and promoting tissue remodeling. As we all know, almost all implanted biomaterials elicit immune responses. Interestingly, the immunomodulatory biomaterials can utilize the inherent regenerative capability of endogenous cells and stem cells recruited by the activated immune cells to facilitate anagenesis and tissue remodeling. Macrophages, as almost ones of the first responses upon the implantation of biomaterials, play a vital role in guiding vascular formation and tissue remodeling. The polarization of macrophages can be influenced by the physical and chemical properties of biomaterials and thus they display diverse function states. Here, this review focus on the macrophage polarization in response to biomaterials and the interactions between them. It also summarizes the current strategies to promote vascularization of tissue engineering constructs through macrophage responses.
Collapse
Affiliation(s)
- Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
28
|
Implant Fibrosis and the Underappreciated Role of Myofibroblasts in the Foreign Body Reaction. Cells 2021; 10:cells10071794. [PMID: 34359963 PMCID: PMC8304203 DOI: 10.3390/cells10071794] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Body implants and implantable medical devices have dramatically improved and prolonged the life of countless patients. However, our body repair mechanisms have evolved to isolate, reject, or destroy any object that is recognized as foreign to the organism and inevitably mounts a foreign body reaction (FBR). Depending on its severity and chronicity, the FBR can impair implant performance or create severe clinical complications that will require surgical removal and/or replacement of the faulty device. The number of review articles discussing the FBR seems to be proportional to the number of different implant materials and clinical applications and one wonders, what else is there to tell? We will here take the position of a fibrosis researcher (which, coincidentally, we are) to elaborate similarities and differences between the FBR, normal wound healing, and chronic healing conditions that result in the development of peri-implant fibrosis. After giving credit to macrophages in the inflammatory phase of the FBR, we will mainly focus on the activation of fibroblastic cells into matrix-producing and highly contractile myofibroblasts. While fibrosis has been discussed to be a consequence of the disturbed and chronic inflammatory milieu in the FBR, direct activation of myofibroblasts at the implant surface is less commonly considered. Thus, we will provide a perspective how physical properties of the implant surface control myofibroblast actions and accumulation of stiff scar tissue. Because formation of scar tissue at the surface and around implant materials is a major reason for device failure and extraction surgeries, providing implant surfaces with myofibroblast-suppressing features is a first step to enhance implant acceptance and functional lifetime. Alternative therapeutic targets are elements of the myofibroblast mechanotransduction and contractile machinery and we will end with a brief overview on such targets that are considered for the treatment of other organ fibroses.
Collapse
|
29
|
Song X, Liu F, Qiu C, Coy E, Liu H, Aperador W, Załęski K, Li JJ, Song W, Lu Z, Pan H, Kong L, Wang G. Nanosurfacing Ti alloy by weak alkalinity-activated solid-state dewetting (AAD) and its biointerfacial enhancement effect. MATERIALS HORIZONS 2021; 8:912-924. [PMID: 34821321 DOI: 10.1039/d0mh01837f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoscale manipulation of material surfaces can create extraordinary properties, holding great potential for modulating the implant-bio interface for enhanced performance. In this study, a green, simple and biocompatible nanosurfacing approach based on weak alkalinity-activated solid-state dewetting (AAD) was for the first time developed to nano-manipulate the Ti6Al4V surface by atomic self-rearrangement. AAD treatment generated quasi-periodic titanium oxide nanopimples with high surface energy. The nanopimple-like nanostructures enhanced the osteogenic activity of osteoblasts, facilitated M2 polarization of macrophages, and modulated the cross-talk between osteoblasts and macrophages, which collectively led to significant strengthening of in vivo bone-implant interfacial bonding. In addition, the titanium oxide nanopimples strongly adhered to the Ti alloy, showing resistance to tribocorrosion damage. The results suggest strong nano-bio interfacial effects, which was not seen for the control Ti alloy processed through traditional thermal oxidation. Compared to other nanostructuring strategies, the AAD technique shows great potential to integrate high-performance, functionality, practicality and scalability for surface modification of medical implants.
Collapse
Affiliation(s)
- Xiaoxia Song
- Research Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong 518055, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li B, Zhang L, Wang D, Peng F, Zhao X, Liang C, Li H, Wang H. Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111878. [DOI: 10.1016/j.msec.2021.111878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
|
31
|
Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, Zhou L, Ning C. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater 2021; 6:2754-2766. [PMID: 33665507 PMCID: PMC7897935 DOI: 10.1016/j.bioactmat.2021.02.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The host immune response effecting on biomaterials is critical to determine implant fates and bone regeneration property. Bone marrow stem cells (BMSCs) derived exosomes (Exos) contain multiple biosignal molecules and have been demonstrated to exhibit immunomodulatory functions. Herein, we develop a BMSC-derived Exos-functionalized implant to accelerate bone integration by immunoregulation. BMSC-derived Exos were reversibly incorporated on tannic acid (TA) modified sulfonated polyetheretherketone (SPEEK) via the strong interaction of TA with biomacromolecules. The slowly released Exos from SPEEK can be phagocytosed by co-cultured cells, which could efficiently improve the biocompatibilities of SPEEK. In vitro results showed the Exos loaded SPEEK promoted macrophage M2 polarization via the NF-κB pathway to enhance BMSCs osteogenic differentiation. Further in vivo rat air-pouch model and rat femoral drilling model assessment of Exos loaded SPEEK revealed efficient macrophage M2 polarization, desirable new bone formation, and satisfactory osseointegration. Thus, BMSC-derived Exos-functionalized implant exerted osteoimmunomodulation effect to promote osteogenesis.
Collapse
Affiliation(s)
- Lei Fan
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.,Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Guan
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Cairong Xiao
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Huiquan Wen
- Department of Radiology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiyou Wang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Can Liu
- Department of Spine Surgery, the First Hospital of Zhejiang University, Hangzhou, 310003, China
| | - Yian Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Peng Yu
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| | - Lei Zhou
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyun Ning
- School of Materials Science and Engineering & National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
32
|
Wang Z, He X, Tang B, Chen X, Dong L, Cheng K, Weng W. Polarization behavior of bone marrow-derived macrophages on charged P(VDF-TrFE) coatings. Biomater Sci 2021; 9:874-881. [PMID: 33236731 DOI: 10.1039/d0bm01604g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immune response of bone implants is closely related to the interaction between macrophages and biomaterial surfaces. In this work, the polarization behavior of mouse bone marrow-derived macrophages (BMDMs), including their morphology and expression of phenotypic markers, genes and cytokines, on charged surfaces with different potential intensities was systematically explored. We found that the charged surface could effectively promote BMDM polarization, and a higher potential intensity was conducive to the upregulation of the polarization of BMDMs into the M2 phenotype. Based on the analysis of the signaling pathways involved in integrins (αMβ2 and α5β1) and the potassium ion channel (Kv1.3), a possible underlying mechanism revealed that the integrin originated signaling pathways could more dominantly regulate macrophage polarization to the M2 phenotype. The present work therefore demonstrates that the surface charge, as a physicochemical property of material surfaces, could effectively regulate macrophage polarizations, which may provide an immunoregulation view for the surface design of biomaterials.
Collapse
Affiliation(s)
- Zhiying Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Xuzhao He
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Xiaoyi Chen
- The Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Lingqing Dong
- The Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Kui Cheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| | - Wenjian Weng
- School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
33
|
Peng F, Cheng S, Zhang R, Li M, Zhou J, Wang D, Zhang Y. Zn-contained mussel-inspired film on Mg alloy for inhibiting bacterial infection and promoting bone regeneration. Regen Biomater 2021; 8:rbaa044. [PMID: 33732490 PMCID: PMC7947588 DOI: 10.1093/rb/rbaa044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/01/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023] Open
Abstract
Infection and insufficient osteointegration are the main causes of orthopedic implant failure. Furthermore, activating favorable inflammation response is vital to the fast osteointegration of implants. Therefore, endowing the implants with multifunctions (antibacterial, anti-inflammation, and pro-osteointegration) is a promising strategy to improve the performance of orthopedic implants. In this study, a Zn-contained polydopamine (PDA) film was fabricated on AZ31 alloy. The film possessed a stable Zn ion release in 14 days. The results of electrochemical analysis implied the favorable corrosion protection of the film, and thus, leading to a suitable hemolysis ratio (below 1%). The in vitro antibacterial assessment revealed that the film exhibited excellent resistance against Staphylococcus aureus (nearly 100%), which can be ascribed to the release of Zn ions. The cell-culture evaluation revealed that the extract of Zn-contained PDA-coated sample can activate RAW264.7 polarization to an anti-inflammatory phenotype, as well as enhance the osteogenic differentiation ability of MC3T3-E1. Additionally, the femoral osteomyelitis model indicated that the as-prepared film had a high antibacterial capability at early stage of the implantation, and showed better osteogenesis and osteointegration after 8 weeks of implantation. With favorable antibacterial, anti-inflammation, and pro-osteogenesis abilities, the novel designed Zn-contained PDA film is promising to be used in Mg-based orthopedic implants.
Collapse
Affiliation(s)
- Feng Peng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ruiying Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Mei Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
34
|
Chen L, Wang D, Qiu J, Zhang X, Liu X, Qiao Y, Liu X. Synergistic effects of immunoregulation and osteoinduction of ds-block elements on titanium surface. Bioact Mater 2021; 6:191-207. [PMID: 32913928 PMCID: PMC7452063 DOI: 10.1016/j.bioactmat.2020.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Ds-block elements have been gaining increasing attention in the field of biomaterials modification, owing to their excellent biological properties, such as antibiosis, osteogenesis, etc. However, their function mechanisms are not well understood and conflicting conclusions were drawn by previous studies on this issue, which are mainly resulted from the inconsistent experimental conditions. In this work, three most widely used ds-block elements, copper, zinc, and silver were introduced on titanium substrate by plasma immersion ion implantation method to investigate the rule of ds-block elements in the immune responses. Results showed that the implanted samples could decrease the inflammatory responses compared with Ti sample. The trend of anti-inflammatory effects of macrophages on samples was in correlation with cellular ROS levels, which was induced by the implanted biomaterials and positively correlated with the number of valence electrons of ds-block elements. The co-culture experiments of macrophages and bone marrow mesenchymal stem cells showed that these two kinds of cells could enhance the anti-inflammation and osteogenesis of samples by the paracrine manner of PGE2. In general, in their steady states on titanium substrate (Cu2+, Zn2+, Ag), the ds-block elements with more valence electrons exhibit better anti-inflammatory and osteogenic effects. Moreover, molecular biology experiments indicate that the PGE2-related signaling pathway may contribute to the desired immunoregulation and osteoinduction capability of ds-block elements. These findings suggest a correlation between the number of valence electrons of ds-block elements and the relevant biological responses, which provides new insight into the selection of implanted ions and surface design of biomaterials.
Collapse
Affiliation(s)
- Lan Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Donghui Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xianming Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xingdan Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
35
|
Min S, Jeon YS, Choi H, Khatua C, Li N, Bae G, Jung HJ, Kim Y, Hong H, Shin J, Ko MJ, Ko HS, Kim T, Moon JH, Song JJ, Dravid VP, Kim YK, Kang H. Large and Externally Positioned Ligand-Coated Nanopatches Facilitate the Adhesion-Dependent Regenerative Polarization of Host Macrophages. NANO LETTERS 2020; 20:7272-7280. [PMID: 32910662 DOI: 10.1021/acs.nanolett.0c02655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Macrophages can associate with extracellular matrix (ECM) demonstrating nanosequenced cell-adhesive RGD ligand. In this study, we devised barcoded materials composed of RGD-coated gold and RGD-absent iron nanopatches to show various frequencies and position of RGD-coated nanopatches with similar areas of iron and RGD-gold nanopatches that maintain macroscale and nanoscale RGD density invariant. Iron patches were used for substrate coupling. Both large (low frequency) and externally positioned RGD-coated nanopatches stimulated robust attachment in macrophages, compared with small (high frequency) and internally positioned RGD-coated nanopatches, respectively, which mediate their regenerative/anti-inflammatory M2 polarization. The nanobarcodes exhibited stability in vivo. We shed light into designing ligand-engineered nanostructures in an external position to facilitate host cell attachment, thereby eliciting regenerative host responses.
Collapse
Affiliation(s)
- Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoo Sang Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Research Institute of Engineering and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chandra Khatua
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jeongeun Shin
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Han Seok Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Taesoon Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 08308, Republic of Korea
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
36
|
Ni S, Zhai D, Huan Z, Zhang T, Chang J, Wu C. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis. NANOSCALE 2020; 12:16474-16488. [PMID: 32743625 DOI: 10.1039/d0nr03886e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The immunomodulatory capability of biomaterials is of paramount importance for successful material-mediated bone regeneration. Particularly, the design of surface nano-topography can be leveraged to instruct immune reactions, yet the understanding of such "nano-morphology effect" is still very limited. Herein, highly ordered nano-concave pit (denoted as NCPit) and nano-convex dot (denoted as NCDot) microarrays with two different sizes were successfully constructed on a 316LSS surface via anodization and subsequently immersion-coating treatment, respectively. We, for the first time, comparatively investigated the interactions of NCPit and NCDot microarrays with RAW264.7 macrophages and their immunomodulatory impacts on osteogenesis and angiogenesis of human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs). NCDot microarrays induced macrophages towards M2 polarization with the higher expression level of anti-inflammatory markers (IL-10 and CD 206) and the lower level of pro-inflammatory markers (TNF-α, IL-1β, IL-6 and CD 86) than those of the corresponding NCPit microarrays. During the process, the expressions of osteogenesis-related genes (Runx2, OPN and OCN) of hBMSCs, and angiogenesis-related genes (eNOS, HIF-1α, KDR and VEGF) of HUVECs were significantly upregulated by the NCDot microarray-modulating immune microenvironment of macrophages, and finally stimulated osteogenesis and angiogenesis. Thus, the prepared NCDot arrays were able to significantly promote osteo-/angiogenic activity by generating a more suitable immune microenvironment than NCPit arrays, offering substantial evidence for designing immunomodulatory biomaterials with specific microstructures and optimal bioactivity.
Collapse
Affiliation(s)
- Siyu Ni
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
| | | | | | | | | | | |
Collapse
|
37
|
Liu XQ, Chen XT, Liu ZZ, Gu SS, He LJ, Wang KP, Tang RZ. Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomater Sci Eng 2020; 6:3994-4004. [DOI: 10.1021/acsbiomaterials.0c00669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xin-Ting Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Li-Jie He
- Graphitene Ltd., Flixborough, North Lincolnshire DN15 8SJ, United Kingdom
| | - Kai-Ping Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
38
|
Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharmacol 2020; 877:173090. [PMID: 32234529 DOI: 10.1016/j.ejphar.2020.173090] [Citation(s) in RCA: 1119] [Impact Index Per Article: 223.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
Macrophages can be affected by a variety of factors to change their phenotype and thus affect their function. Activated macrophages are usually divided into two categories, M1-like macrophages and M2-like macrophages. Both M1 macrophages and M2 macrophages are closely related to inflammatory responses, among which M1 macrophages are mainly involved in pro-inflammatory responses and M2 macrophages are mainly involved in anti-inflammatory responses. Improving the inflammatory environment by modulating the activation state of macrophages is an effective method for the treatment of diseases. In this review, we analyzed the mechanism of macrophage polarization from the tumor microenvironment, nanocarriers, nuclear receptor PPARγ, phagocytosis, NF-κB signaling pathways, and other pathways.
Collapse
Affiliation(s)
- Chen Yunna
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Hu Mengru
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Wang Lei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China.
| | - Chen Weidong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Education Office of Anhui Province, Hefei, Anhui, 230012, China.
| |
Collapse
|
39
|
Han F, Wang J, Ding L, Hu Y, Li W, Yuan Z, Guo Q, Zhu C, Yu L, Wang H, Zhao Z, Jia L, Li J, Yu Y, Zhang W, Chu G, Chen S, Li B. Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front Bioeng Biotechnol 2020; 8:83. [PMID: 32266221 PMCID: PMC7105900 DOI: 10.3389/fbioe.2020.00083] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022] Open
Abstract
Exploring innovative solutions to improve the healthcare of the aging and diseased population continues to be a global challenge. Among a number of strategies toward this goal, tissue engineering and regenerative medicine (TERM) has gradually evolved into a promising approach to meet future needs of patients. TERM has recently received increasing attention in Asia, as evidenced by the markedly increased number of researchers, publications, clinical trials, and translational products. This review aims to give a brief overview of TERM development in Asia over the last decade by highlighting some of the important advances in this field and featuring major achievements of representative research groups. The development of novel biomaterials and enabling technologies, identification of new cell sources, and applications of TERM in various tissues are briefly introduced. Finally, the achievement of TERM in Asia, including important publications, representative discoveries, clinical trials, and examples of commercial products will be introduced. Discussion on current limitations and future directions in this hot topic will also be provided.
Collapse
Affiliation(s)
- Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiayuan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luguang Ding
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yuanbin Hu
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, China
| | - Wenquan Li
- Department of Otolaryngology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Li Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Huan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Zhongliang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Luanluan Jia
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Jiaying Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Yingkang Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Orthopaedic Institute, Soochow University, Suzhou, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|