1
|
Chen PZ, Skirzynska A, Yuan T, Voznyy O, Gu FX. Asymmetric Interfacet Adatom Migration as a Mode of Anisotropic Nanocrystal Growth. J Am Chem Soc 2022; 144:19417-19429. [PMID: 36226909 DOI: 10.1021/jacs.2c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.
Collapse
Affiliation(s)
- Paul Z Chen
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| | - Arianna Skirzynska
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada
| | - Tiange Yuan
- Department of Physical & Environmental Sciences, Department of Chemistry, University of Toronto, Scarborough, ONM1C1A4, Canada
| | - Oleksandr Voznyy
- Department of Physical & Environmental Sciences, Department of Chemistry, University of Toronto, Scarborough, ONM1C1A4, Canada
| | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ONM5S3E5, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S3G9, Canada
| |
Collapse
|
2
|
Unusual layer-by-layer growth of epitaxial oxide islands during Cu oxidation. Nat Commun 2021; 12:2781. [PMID: 33986274 PMCID: PMC8119701 DOI: 10.1038/s41467-021-23043-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Elucidating metal oxide growth mechanisms is essential for precisely designing and fabricating nanostructured oxides with broad applications in energy and electronics. However, current epitaxial oxide growth methods are based on macroscopic empirical knowledge, lacking fundamental guidance at the nanoscale. Using correlated in situ environmental transmission electron microscopy, statistically-validated quantitative analysis, and density functional theory calculations, we show epitaxial Cu2O nano-island growth on Cu is layer-by-layer along Cu2O(110) planes, regardless of substrate orientation, contradicting classical models that predict multi-layer growth parallel to substrate surfaces. Growth kinetics show cubic relationships with time, indicating individual oxide monolayers follow Frank-van der Merwe growth whereas oxide islands follow Stranski-Krastanov growth. Cu sources for island growth transition from step edges to bulk substrates during oxidation, contrasting with classical corrosion theories which assume subsurface sources predominate. Our results resolve alternative epitaxial island growth mechanisms, improving the understanding of oxidation dynamics critical for advanced manufacturing at the nanoscale.
Collapse
|
3
|
De Wael A, De Backer A, Van Aert S. Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations. Ultramicroscopy 2020; 219:113131. [PMID: 33091707 DOI: 10.1016/j.ultramic.2020.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.
Collapse
Affiliation(s)
- Annelies De Wael
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium
| | - Annick De Backer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium.
| |
Collapse
|
4
|
Wang L, Zhang Z, Cheng Y, Zhang Y, Liu W, Su J, Liu N, Gao Y. Revealing the Phase-Transition Dynamics and Mechanism in a Spinel Li 4Ti 5O 12 Anode Material through in Situ Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20874-20881. [PMID: 32275129 DOI: 10.1021/acsami.0c03533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spinel Li4Ti5O12 is considered as a promising anode material for long-life lithium-ion batteries because of the negligible volumetric variation during the insertion and extraction of Li ions. Phase transition is an inevitable process during the migration of Li ions, and the transition process and mechanism need detailed investigation down to the atomic scale. In this study, we investigated the behavior and mechanism on the phase transition of Li4Ti5O12 through in situ transmission electron microscopy (TEM). It has been found that the spinel-structured Li4Ti5O12 was gradually transformed to a rock salt structure under electron beam irradiation. A sharp interface with an epitaxial relationship was observed between the transformed rock salt phase and the parent spinel phase. Furthermore, the heterostructure with different crystal structures of Li4Ti5O12 has been precisely tailored with electron beam irradiation. Our detailed in situ TEM results and theoretical calculations led to unprecedented level on the understanding of phase-transition mechanism in Li4Ti5O12. This study demonstrates a possible approach to precisely engineer the crystal structure of materials and to realize a well-designed heterostructure in electrode materials.
Collapse
Affiliation(s)
- Longfei Wang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Zhi Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yongfa Cheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yanan Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Weifeng Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Jun Su
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Nishuang Liu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
- College of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
5
|
De Wael A, De Backer A, Jones L, Varambhia A, Nellist PD, Van Aert S. Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy. PHYSICAL REVIEW LETTERS 2020; 124:106105. [PMID: 32216442 DOI: 10.1103/physrevlett.124.106105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.
Collapse
Affiliation(s)
- Annelies De Wael
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Annick De Backer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lewys Jones
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
- Advanced Microscopy Laboratory, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Dublin 2, Ireland
- School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Aakash Varambhia
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - Peter D Nellist
- Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, United Kingdom
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
6
|
Cao K, Liu H, Li W, Han Q, Zhang Z, Huang K, Jing Q, Jiao L. CuO Nanoplates for High-Performance Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901775. [PMID: 31339229 DOI: 10.1002/smll.201901775] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Indexed: 05/28/2023]
Abstract
Potassium-ion batteries (KIBs) are promising alternatives to lithium-ion batteries because of the abundance and low cost of K. However, an important challenge faced by KIBs is the search for high-capacity materials that can hold large-diameter K ions. Herein, copper oxide (CuO) nanoplates are synthesized as high-performance anode materials for KIBs. CuO nanoplates with a thickness of ≈20 nm afford a large electrode-electrolyte contact interface and short K+ ion diffusion distance. As a consequence, a reversible capacity of 342.5 mAh g-1 is delivered by the as-prepared CuO nanoplate electrode at 0.2 A g-1 . Even after 100 cycles at a high current density of 1.0 A g-1 , the capacity of the electrode remains over 206 mAh g-1 , which is among the best values for KIB anodes reported in the literature. Moreover, a conversion reaction occurs at the CuO anode. Cu nanoparticles form during the first potassiation process and reoxidize to Cu2 O during the depotassiation process. Thereafter, the conversion reaction proceeds between the as-formed Cu2 O and Cu, yielding a reversible theoretical capacity of 374 mAh g-1 . Considering their low cost, easy preparation, and environmental benignity, CuO nanoplates are promising KIB anode materials.
Collapse
Affiliation(s)
- Kangzhe Cao
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Huiqiao Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Wangyang Li
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Qingqing Han
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhang Zhang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Kejing Huang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Qiangshan Jing
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-Metallic Mineral in the South of Henan, Xinyang Normal University, Xinyang, 464000, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|