1
|
Tzror Y, Bezner M, Deri S, Trigano T, Ben-Harush K. Nanofilament organization in highly tough fibers based on lamin proteins. J Mech Behav Biomed Mater 2024; 160:106748. [PMID: 39332142 DOI: 10.1016/j.jmbbm.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically Caenorhabditis elegans lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca+2 ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.
Collapse
Affiliation(s)
- Yael Tzror
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Mark Bezner
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Shani Deri
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Tom Trigano
- Department of Electrical Engineering, SCE - Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Kfir Ben-Harush
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel.
| |
Collapse
|
2
|
Kechagia Z, Eibauer M, Medalia O. Structural determinants of intermediate filament mechanics. Curr Opin Cell Biol 2024; 89:102375. [PMID: 38850681 DOI: 10.1016/j.ceb.2024.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 06/10/2024]
Abstract
Intermediate filaments (IFs) are integral to the cell cytoskeleton, supporting cellular mechanical stability. Unlike other cytoskeletal components, the detailed structure of assembled IFs has yet to be resolved. This review highlights new insights, linking the complex IF hierarchical assembly to their mechanical properties and impact on cellular functions. While we focus on vimentin IFs, we draw comparisons to keratins, showcasing the distinctive structural and mechanical features that underlie their unique mechanical responses.
Collapse
Affiliation(s)
- Zanetta Kechagia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
3
|
Petitjean II, Tran QD, Goutou A, Kabir Z, Wiche G, Leduc C, Koenderink GH. Reconstitution of cytolinker-mediated crosstalk between actin and vimentin. Eur J Cell Biol 2024; 103:151403. [PMID: 38503131 DOI: 10.1016/j.ejcb.2024.151403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Cell shape and motility are determined by the cytoskeleton, an interpenetrating network of actin filaments, microtubules, and intermediate filaments. The biophysical properties of each filament type individually have been studied extensively by cell-free reconstitution. By contrast, the interactions between the three cytoskeletal networks are relatively unexplored. They are coupled via crosslinkers of the plakin family such as plectin. These are challenging proteins for reconstitution because of their giant size and multidomain structure. Here we engineer a recombinant actin-vimentin crosslinker protein called 'ACTIF' that provides a minimal model system for plectin, recapitulating its modular design with actin-binding and intermediate filament-binding domains separated by a coiled-coil linker for dimerisation. We show by fluorescence and electron microscopy that ACTIF has a high binding affinity for vimentin and actin and creates mixed actin-vimentin bundles. Rheology measurements show that ACTIF-mediated crosslinking strongly stiffens actin-vimentin composites. Finally, we demonstrate the modularity of this approach by creating an ACTIF variant with the intermediate filament binding domain of Adenomatous Polyposis Coli. Our protein engineering approach provides a new cell-free system for the biophysical characterization of intermediate filament-binding crosslinkers and for understanding the mechanical synergy between actin and vimentin in mesenchymal cells.
Collapse
Affiliation(s)
- Irene Istúriz Petitjean
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Quang D Tran
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France
| | - Angeliki Goutou
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Zima Kabir
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Cécile Leduc
- CNRS, Institut Jacques Monod, Université Paris Cité, Paris F-75013, France.
| | - Gijsje H Koenderink
- Department of Bionanoscience & Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
4
|
Kraxner J, Köster S. Influence of phosphorylation on intermediate filaments. Biol Chem 2023; 404:821-827. [PMID: 37074314 PMCID: PMC10506380 DOI: 10.1515/hsz-2023-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/31/2023] [Indexed: 04/20/2023]
Abstract
The cytoskeleton of eukaryotes consists of actin filaments, microtubules and intermediate filaments (IF). IFs, in particular, are prone to pronounced phosphorylation, leading to additional charges on the affected amino acids. In recent years, a variety of experiments employing either reconstituted protein systems or living cells have revealed that these altered charge patterns form the basis for a number of very diverse cellular functions and processes, including reversible filament assembly, filament softening, network remodeling, cell migration, interactions with other protein structures, and biochemical signaling.
Collapse
Affiliation(s)
- Julia Kraxner
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, D-13125 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, D-10785 Berlin, Germany
| | - Sarah Köster
- University of Göttingen, Institute for X-Ray Physics, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
5
|
Lorenz C, Forsting J, Style RW, Klumpp S, Köster S. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity. MATTER 2023; 6:2019-2033. [PMID: 37332398 PMCID: PMC10273143 DOI: 10.1016/j.matt.2023.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023]
Abstract
Cell mechanics are determined by an intracellular biopolymer network, including intermediate filaments that are expressed in a cell-type-specific manner. A prominent pair of intermediate filaments are keratin and vimentin, as they are expressed by non-motile and motile cells, respectively. Therefore, the differential expression of these proteins coincides with a change in cellular mechanics and dynamic properties of the cells. This observation raises the question of how the mechanical properties already differ on the single filament level. Here, we use optical tweezers and a computational model to compare the stretching and dissipation behavior of the two filament types. We find that keratin and vimentin filaments behave in opposite ways: keratin filaments elongate but retain their stiffness, whereas vimentin filaments soften but retain their length. This finding is explained by fundamentally different ways to dissipate energy: viscous sliding of subunits within keratin filaments and non-equilibrium α helix unfolding in vimentin filaments.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert W. Style
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Max Planck School “Matter to Life”, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Zeng Y, Plachetzki DC, Nieders K, Campbell H, Cartee M, Pankey MS, Guillen K, Fudge D. Epidermal threads reveal the origin of hagfish slime. eLife 2023; 12:81405. [PMID: 36897815 PMCID: PMC10005773 DOI: 10.7554/elife.81405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/22/2023] [Indexed: 03/11/2023] Open
Abstract
When attacked, hagfishes produce a soft, fibrous defensive slime within a fraction of a second by ejecting mucus and threads into seawater. The rapid setup and remarkable expansion of the slime make it a highly effective and unique form of defense. How this biomaterial evolved is unknown, although circumstantial evidence points to the epidermis as the origin of the thread- and mucus-producing cells in the slime glands. Here, we describe large intracellular threads within a putatively homologous cell type from hagfish epidermis. These epidermal threads averaged ~2 mm in length and ~0.5 μm in diameter. The entire hagfish body is covered by a dense layer of epidermal thread cells, with each square millimeter of skin storing a total of ~96 cm threads. Experimentally induced damage to a hagfish's skin caused the release of threads, which together with mucus, formed an adhesive epidermal slime that is more fibrous and less dilute than the defensive slime. Transcriptome analysis further suggests that epidermal threads are ancestral to the slime threads, with duplication and diversification of thread genes occurring in parallel with the evolution of slime glands. Our results support an epidermal origin of hagfish slime, which may have been driven by selection for stronger and more voluminous slime.
Collapse
Affiliation(s)
- Yu Zeng
- Schmid College of Science and Technology, Chapman University, Orange, United States
| | - David C Plachetzki
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Kristen Nieders
- Schmid College of Science and Technology, Chapman University, Orange, United States
| | - Hannah Campbell
- Schmid College of Science and Technology, Chapman University, Orange, United States
| | - Marissa Cartee
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States.,Department of Evolution, Ecology and Organismal Biology, University of California at Riverside, Riverside, United States
| | - M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Kennedy Guillen
- Schmid College of Science and Technology, Chapman University, Orange, United States
| | - Douglas Fudge
- Schmid College of Science and Technology, Chapman University, Orange, United States
| |
Collapse
|
7
|
Tsirigoni AM, Goktas M, Atris Z, Valleriani A, Vila Verde A, Blank KG. Chain Sliding versus β-Sheet Formation upon Shearing Single α-Helical Coiled Coils. Macromol Biosci 2023; 23:e2200563. [PMID: 36861255 DOI: 10.1002/mabi.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/20/2023] [Indexed: 03/03/2023]
Abstract
Coiled coils (CCs) are key building blocks of biogenic materials and determine their mechanical response to large deformations. Of particular interest is the observation that CC-based materials display a force-induced transition from α-helices to mechanically stronger β-sheets (αβT). Steered molecular dynamics simulations predict that this αβT requires a minimum, pulling speed-dependent CC length. Here, de novo designed CCs with a length between four to seven heptads are utilized to probe if the transition found in natural CCs can be mimicked with synthetic sequences. Using single-molecule force spectroscopy and molecular dynamics simulations, these CCs are mechanically loaded in shear geometry and their rupture forces and structural responses to the applied load are determined. Simulations at the highest pulling speed (0.01 nm ns-1 ) show the appearance of β-sheet structures for the five- and six-heptad CCs and a concomitant increase in mechanical strength. The αβT is less probable at a lower pulling speed of 0.001 nm ns-1 and is not observed in force spectroscopy experiments. For CCs loaded in shear geometry, the formation of β-sheets competes with interchain sliding. β-sheet formation is only possible in higher-order CC assemblies or in tensile-loading geometries where chain sliding and dissociation are prohibited.
Collapse
Affiliation(s)
- Anna-Maria Tsirigoni
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Zeynep Atris
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Angelo Valleriani
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Ana Vila Verde
- University of Duisburg-Essen, Faculty of Physics, Lotharstrasse 1, 47057, Duisburg, Germany
| | - Kerstin G Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Am Mühlenberg 1, 14476, Potsdam, Germany.,Johannes Kepler University Linz, Institute of Experimental Physics, Department of Biomolecular & Selforganizing Matter, Altenberger Strasse 69, Linz, 4040, Austria
| |
Collapse
|
8
|
Ehm T, Shinar H, Jacoby G, Meir S, Koren G, Segal Asher M, Korpanty J, Thompson MP, Gianneschi NC, Kozlov MM, Azoulay-Ginsburg S, Amir RJ, Rädler JO, Beck R. Self-Assembly of Tunable Intrinsically Disordered Peptide Amphiphiles. Biomacromolecules 2023; 24:98-108. [PMID: 36469950 PMCID: PMC9832477 DOI: 10.1021/acs.biomac.2c00866] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrinsically disordered peptide amphiphiles (IDPAs) present a novel class of synthetic conjugates that consist of short hydrophilic polypeptides anchored to hydrocarbon chains. These hybrid polymer-lipid block constructs spontaneously self-assemble into dispersed nanoscopic aggregates or ordered mesophases in aqueous solution due to hydrophobic interactions. Yet, the possible sequence variations and their influence on the self-assembly structures are vast and have hardly been explored. Here, we measure the nanoscopic self-assembled structures of four IDPA systems that differ by their amino acid sequence. We show that permutations in the charge pattern along the sequence remarkably alter the headgroup conformation and consequently alter the pH-triggered phase transitions between spherical, cylindrical micelles and hexagonal condensed phases. We demonstrate that even a single amino acid mutation is sufficient to tune structural transitions in the condensed IDPA mesophases, while peptide conformations remain unfolded and disordered. Furthermore, alteration of the peptide sequence can render IDPAs to become susceptible to enzymatic cleavage and induce enzymatically activated phase transitions. These results hold great potential for embedding multiple functionalities into lipid nanoparticle delivery systems by incorporating IDPAs with the desired properties.
Collapse
Affiliation(s)
- Tamara Ehm
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,Faculty
of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, MünchenD-80539, Germany,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hila Shinar
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Guy Jacoby
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sagi Meir
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gil Koren
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Merav Segal Asher
- The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel,Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joanna Korpanty
- Department
of Chemistry, International Institute for Nanotechnology, Chemistry
of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew P. Thompson
- Department
of Chemistry, International Institute for Nanotechnology, Chemistry
of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry, International Institute for Nanotechnology, Chemistry
of Life Processes Institute, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, United States,Department
of Materials Science & Engineering, Department of Biomedical Engineering
and Department of Pharmacology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Michael M. Kozlov
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,Raymond
& Beverly Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Salome Azoulay-Ginsburg
- Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roey J. Amir
- The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel,Raymond
& Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel,The
ADAMA Center for Novel Delivery Systems in Crop Protection, Tel Aviv University, Tel Aviv 6997801, Israel,Email
| | - Joachim O. Rädler
- Faculty
of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, MünchenD-80539, Germany,
| | - Roy Beck
- Raymond
& Beverly Sackler School of Physics & Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for Physics & Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel,The
Center for NanoTechnology & NanoScience, Tel Aviv University, Tel Aviv 6997801, Israel,
| |
Collapse
|
9
|
Shaebani MR, Stankevicins L, Vesperini D, Urbanska M, Flormann DAD, Terriac E, Gad AKB, Cheng F, Eriksson JE, Lautenschläger F. Effects of vimentin on the migration, search efficiency, and mechanical resilience of dendritic cells. Biophys J 2022; 121:3950-3961. [PMID: 36056556 PMCID: PMC9675030 DOI: 10.1016/j.bpj.2022.08.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells use amoeboid migration to pass through narrow passages in the extracellular matrix and confined tissue in search for pathogens and to reach the lymph nodes and alert the immune system. Amoeboid migration is a migration mode that, instead of relying on cell adhesion, is based on mechanical resilience and friction. To better understand the role of intermediate filaments in ameboid migration, we studied the effects of vimentin on the migration of dendritic cells. We show that the lymph node homing of vimentin-deficient cells is reduced in our in vivo experiments in mice. Lack of vimentin also reduces the cell stiffness, the number of migrating cells, and the migration speed in vitro in both 1D and 2D confined environments. Moreover, we find that lack of vimentin weakens the correlation between directional persistence and migration speed. Thus, vimentin-expressing dendritic cells move faster in straighter lines. Our numerical simulations of persistent random search in confined geometries verify that the reduced migration speed and the weaker correlation between the speed and direction of motion result in longer search times to find regularly located targets. Together, these observations show that vimentin enhances the ameboid migration of dendritic cells, which is relevant for the efficiency of their random search for pathogens.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany
| | - Luiza Stankevicins
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Doriane Vesperini
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marta Urbanska
- Biotechnology Centre, Centre for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Daniel A D Flormann
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Emmanuel Terriac
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Annica K B Gad
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom; Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Fang Cheng
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - John E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Franziska Lautenschläger
- Centre for Biophysics, Saarland University, Saarbrücken, Germany; Department of Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Ndiaye AB, Koenderink GH, Shemesh M. Intermediate Filaments in Cellular Mechanoresponsiveness: Mediating Cytoskeletal Crosstalk From Membrane to Nucleus and Back. Front Cell Dev Biol 2022; 10:882037. [PMID: 35478961 PMCID: PMC9035595 DOI: 10.3389/fcell.2022.882037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The mammalian cytoskeleton forms a mechanical continuum that spans across the cell, connecting the cell surface to the nucleus via transmembrane protein complexes in the plasma and nuclear membranes. It transmits extracellular forces to the cell interior, providing mechanical cues that influence cellular decisions, but also actively generates intracellular forces, enabling the cell to probe and remodel its tissue microenvironment. Cells adapt their gene expression profile and morphology to external cues provided by the matrix and adjacent cells as well as to cell-intrinsic changes in cytoplasmic and nuclear volume. The cytoskeleton is a complex filamentous network of three interpenetrating structural proteins: actin, microtubules, and intermediate filaments. Traditionally the actin cytoskeleton is considered the main contributor to mechanosensitivity. This view is now shifting owing to the mounting evidence that the three cytoskeletal filaments have interdependent functions due to cytoskeletal crosstalk, with intermediate filaments taking a central role. In this Mini Review we discuss how cytoskeletal crosstalk confers mechanosensitivity to cells and tissues, with a particular focus on the role of intermediate filaments. We propose a view of the cytoskeleton as a composite structure, in which cytoskeletal crosstalk regulates the local stability and organization of all three filament families at the sub-cellular scale, cytoskeletal mechanics at the cellular scale, and cell adaptation to external cues at the tissue scale.
Collapse
Affiliation(s)
| | | | - Michal Shemesh
- *Correspondence: Michal Shemesh, ; Gijsje H. Koenderink,
| |
Collapse
|
11
|
Nunes Vicente F, Lelek M, Tinevez JY, Tran QD, Pehau-Arnaudet G, Zimmer C, Etienne-Manneville S, Giannone G, Leduc C. Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging. SCIENCE ADVANCES 2022; 8:eabm2696. [PMID: 35213220 PMCID: PMC8880768 DOI: 10.1126/sciadv.abm2696] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/11/2022] [Indexed: 05/30/2023]
Abstract
Intermediate filaments (IFs) are involved in key cellular functions including polarization, migration, and protection against large deformations. These functions are related to their remarkable ability to extend without breaking, a capacity that should be determined by the molecular organization of subunits within filaments. However, this structure-mechanics relationship remains poorly understood at the molecular level. Here, using super-resolution microscopy (SRM), we show that vimentin filaments exhibit a ~49-nanometer axial repeat both in cells and in vitro. As unit-length filaments (ULFs) were measured at ~59 nanometers, this demonstrates a partial overlap of ULFs during filament assembly. Using an SRM-compatible stretching device, we also provide evidence that the extensibility of vimentin is due to the unfolding of its subunits and not to their sliding, thus establishing a direct link between the structural organization and its mechanical properties. Overall, our results pave the way for future studies of IF assembly, mechanical, and structural properties in cells.
Collapse
Affiliation(s)
- Filipe Nunes Vicente
- Institut Interdisciplinaire des Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux F-33000, France
| | - Mickael Lelek
- Imaging and Modeling Unit, Institut Pasteur, CNRS UMR 3691, Paris F-75015, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, 2RT / DTPS, Institut Pasteur, Paris F-75015 , France
| | - Quang D. Tran
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, CNRS UMR 3691, équipe labellisée Ligue contre le cancer, Paris F-75015, France
- CNRS UMR 7592, Institut Jacques Monod, Université de Paris, Paris F-75013, France
| | - Gerard Pehau-Arnaudet
- CNRS UMR 3528, Institut Pasteur, Paris F-75015, France
- Ultrastructural BioImaging Platform, Institut Pasteur, Paris F-75015, France
| | - Christophe Zimmer
- Imaging and Modeling Unit, Institut Pasteur, CNRS UMR 3691, Paris F-75015, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, CNRS UMR 3691, équipe labellisée Ligue contre le cancer, Paris F-75015, France
| | - Gregory Giannone
- Institut Interdisciplinaire des Neurosciences, CNRS UMR 5297, Université de Bordeaux, Bordeaux F-33000, France
| | - Cécile Leduc
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, CNRS UMR 3691, équipe labellisée Ligue contre le cancer, Paris F-75015, France
- CNRS UMR 7592, Institut Jacques Monod, Université de Paris, Paris F-75013, France
| |
Collapse
|
12
|
Affiliation(s)
- Gaoyuan Wang
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
14
|
Schepers AV, Kraxner J, Lorenz C, Köster S. Mechanics of Single Vimentin Intermediate Filaments Under Load. Methods Mol Biol 2022; 2478:677-700. [PMID: 36063338 DOI: 10.1007/978-1-0716-2229-2_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The eukaryotic cytoskeleton consists of three different types of biopolymers - microtubules, actin filaments, and intermediate filaments - and provides cells with versatile mechanical properties, combining stability and flexibility. The unique molecular structure of intermediate filaments leads to high extensibility and stability under load. With high laser power dual optical tweezers, the mechanical properties of intermediate filaments may be investigated, while monitoring the extension with fluorescence microscopy. Here, we provide detailed protocols for the preparation of single vimentin intermediate filaments and general measurement protocols for (i) stretching experiments, (ii) repeated loading and relaxation cycles, and (iii) force-clamp experiments. We describe methods for the analysis of the experimental data in combination with computational modeling approaches.
Collapse
Affiliation(s)
- Anna V Schepers
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Julia Kraxner
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Charlotta Lorenz
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany
| | - Sarah Köster
- University of Göttingen, Institute for X-Ray Physics, Göttingen, Germany.
| |
Collapse
|
15
|
Qu R, He K, Fan T, Yang Y, Mai L, Lian Z, Zhou Z, Peng Y, Khan AU, Sun B, Huang X, Ouyang J, Pan X, Dai J, Huang W. Single-cell transcriptomic sequencing analyses of cell heterogeneity during osteogenesis of human adipose-derived mesenchymal stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1478-1488. [PMID: 34346140 DOI: 10.1002/stem.3442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for their multilineage differentiation potential with immune-modulatory properties. The molecular underpinnings of differentiation remain largely undefined. In this study, we investigated the cellular and molecular features of chemically induced osteogenesis from MSC isolated from human adipose tissue (human adipose MSCs, hAMSCs) using single-cell RNA-sequencing (scRNA-seq). We found that a near complete differentiation of osteogenic clusters from hAMSCs under a directional induction. Both groups of cells are heterogeneous, and some of the hAMSCs cells are intrinsically prepared for osteogenesis, while variant OS clusters seems in cooperation with a due division of the general function. We identified a set of genes related to cell stress response highly expressed during the differentiation. We also characterized a series of transitional transcriptional waves throughout the process from hAMSCs to osteoblast and specified the unique gene networks and epigenetic status as key markers of osteogenesis.
Collapse
Affiliation(s)
- Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Kai He
- Guangdong Provincial Key Lab of Single Cell Technology and Application & Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Liyao Mai
- Guangdong Provincial Key Lab of Single Cell Technology and Application & Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiwei Lian
- Guangdong Provincial Key Lab of Single Cell Technology and Application & Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, People's Republic of China
| | - Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xinghua Pan
- Guangdong Provincial Key Lab of Single Cell Technology and Application & Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Guangdong Engineering Research Center for Translation of Medical 3D Printing Application & National Demonstration Center for Experimental Education of Basic Medical Sciences & National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells 2021; 10:cells10081960. [PMID: 34440729 PMCID: PMC8394331 DOI: 10.3390/cells10081960] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.
Collapse
|
17
|
Intermediate Filaments from Tissue Integrity to Single Molecule Mechanics. Cells 2021; 10:cells10081905. [PMID: 34440673 PMCID: PMC8392029 DOI: 10.3390/cells10081905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs), which together with actin and microtubules form the cytoskeleton, are composed of a large and diverse family of proteins. Efforts to elucidate the molecular mechanisms responsible for IF-associated diseases increasingly point towards a major contribution of IFs to the cell’s ability to adapt, resist and respond to mechanical challenges. From these observations, which echo the impressive resilience of IFs in vitro, we here discuss the role of IFs as master integrators of cell and tissue mechanics. In this review, we summarize our current understanding of the contribution of IFs to cell and tissue mechanics and explain these results in light of recent in vitro studies that have investigated physical properties of single IFs and IF networks. Finally, we highlight how changes in IF gene expression, network assembly dynamics, and post-translational modifications can tune IF properties to adapt cell and tissue mechanics to changing environments.
Collapse
|
18
|
Multiscale mechanics and temporal evolution of vimentin intermediate filament networks. Proc Natl Acad Sci U S A 2021; 118:2102026118. [PMID: 34187892 DOI: 10.1073/pnas.2102026118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics-single-filament mechanics, filament length, and interactions between filaments-including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament-filament interactions.
Collapse
|
19
|
Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions. Nat Commun 2021; 12:3799. [PMID: 34145230 PMCID: PMC8213705 DOI: 10.1038/s41467-021-23523-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
The cytoskeleton determines cell mechanics and lies at the heart of important cellular functions. Growing evidence suggests that the manifold tasks of the cytoskeleton rely on the interactions between its filamentous components-actin filaments, intermediate filaments, and microtubules. However, the nature of these interactions and their impact on cytoskeletal dynamics are largely unknown. Here, we show in a reconstituted in vitro system that vimentin intermediate filaments stabilize microtubules against depolymerization and support microtubule rescue. To understand these stabilizing effects, we directly measure the interaction forces between individual microtubules and vimentin filaments. Combined with numerical simulations, our observations provide detailed insight into the physical nature of the interactions and how they affect microtubule dynamics. Thus, we describe an additional, direct mechanism by which cells establish the fundamental cross talk of cytoskeletal components alongside linker proteins. Moreover, we suggest a strategy to estimate the binding energy of tubulin dimers within the microtubule lattice.
Collapse
|
20
|
Abstract
Cell morphology, architecture and dynamics primarily rely on intracellular cytoskeletal networks, which in metazoans are mainly composed of actin microfilaments, microtubules and intermediate filaments (IFs). The diameter size of 10 nm - intermediate between the diameters of actin microfilaments and microtubules - initially gave IFs their name. However, the structure, dynamics, mechanical properties and functions of IFs are not intermediate but set them apart from actin and microtubules. Because of their nucleotide-independent assembly, the lack of intrinsic polarity, their relative stability and their complex composition, IFs had long been overlooked by cell biologists. Now, the numerous human diseases identified to be associated with IF gene mutations and the accumulating evidence of IF functions in cell and tissue integrity explain the growing attention that is being given to the structural characteristics, dynamics and functions of these filaments. In this Primer, we highlight the growing evidence that has revealed a role for IFs as a key element of the cytoskeleton, providing versatile, tunable, cell-type-specific filamentous networks with unique cytoplasmic and nuclear functions.
Collapse
Affiliation(s)
- Gaëlle Dutour-Provenzano
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France.
| |
Collapse
|
21
|
Denz M, Marschall M, Herrmann H, Köster S. Ion type and valency differentially drive vimentin tetramers into intermediate filaments or higher order assemblies. SOFT MATTER 2021; 17:870-878. [PMID: 33237065 DOI: 10.1039/d0sm01659d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vimentin intermediate filaments, together with actin filaments and microtubules, constitute the cytoskeleton in cells of mesenchymal origin. The mechanical properties of the filaments themselves are encoded in their molecular architecture and depend on their ionic environment. It is thus of great interest to disentangle the influence of both the ion type and their concentration on vimentin assembly. We combine small angle X-ray scattering and fluorescence microscopy and show that vimentin in the presence of the monovalent ions, K+ and Na+, assembles into "standard filaments" with a radius of about 6 nm and 32 monomers per cross-section. In contrast, di- and multivalent ions, independent of type and valency, lead to the formation of thicker filaments associating over time into higher order structures. Hence, our results may indeed be of relevance for living cells, as local ion concentrations in the cytoplasm during certain physiological activities may differ considerably from average intracellular concentrations.
Collapse
Affiliation(s)
- Manuela Denz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
22
|
Kraxner J, Lorenz C, Menzel J, Parfentev I, Silbern I, Denz M, Urlaub H, Schwappach B, Köster S. Post-translational modifications soften vimentin intermediate filaments. NANOSCALE 2021; 13:380-387. [PMID: 33351020 DOI: 10.1039/d0nr07322a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mechanical properties of biological cells are determined by the cytoskeleton, a composite biopolymer network consisting of microtubules, actin filaments and intermediate filaments (IFs). By differential expression of cytoskeletal proteins, modulation of the network architecture and interactions between the filaments, cell mechanics may be adapted to varying requirements on the cell. Here, we focus on the intermediate filament protein vimentin and introduce post-translational modifications as an additional, much faster mechanism for mechanical modulation. We study the impact of phosphorylation on filament mechanics by recording force-strain curves using optical traps. Partial phosphorylation softens the filaments. We show that binding of the protein 14-3-3 to phosphorylated vimentin IFs further enhances this effect and speculate that in the cell 14-3-3 may serve to preserve the softening and thereby the altered cell mechanics. We explain our observation by the additional charges introduced during phosphorylation.
Collapse
Affiliation(s)
- Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ebrahim OFA, Nafea OE, Samy W, Shawky LM. L-carnitine suppresses cisplatin-induced renal injury in rats: impact on cytoskeleton proteins expression. Toxicol Res (Camb) 2021; 10:51-59. [PMID: 33613972 DOI: 10.1093/toxres/tfaa092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
We designed this work to examine the curative role of L-carnitine (LCAR) in a rat model of cisplatin (CDDP)-induced kidney injury. We induced kidney injury in rats by a single intraperitoneal injection of 5 mg/kg of CDDP. Fifteen days post injection, rats were orally supplemented with 354 mg/kg of LCAR for another 15 days. Kidney tissues were subjected to histo-biochemical analysis along with mRNA gene expression quantification for cytoskeleton proteins encoding genes (vimentin, nestin, and connexin 43) by real-time reverse transcription polymerase chain reaction. LCAR reversed CDDP-induced renal structural and functional impairments. LCAR significantly declined serum urea and creatinine concentrations, restored oxidant/antioxidant balance, reversed inflammation, and antagonized caspase 3-mediated apoptotic cell death in renal tissues. Moreover, LCAR effectively down-regulated cytoskeleton proteins mRNA levels, reflecting amelioration of CDDP-provoked podocyte injury. We concluded that LCAR has a favorable therapeutic utility against CDDP-induced kidney injury.
Collapse
Affiliation(s)
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Walaa Samy
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Lamiaa Mohamed Shawky
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
24
|
Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. The vimentin cytoskeleton: when polymer physics meets cell biology. Phys Biol 2020; 18:011001. [PMID: 32992303 PMCID: PMC8240483 DOI: 10.1088/1478-3975/abbcc2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper functions of tissues depend on the ability of cells to withstand stress and maintain shape. Central to this process is the cytoskeleton, comprised of three polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). IF proteins are among the most abundant cytoskeletal proteins in cells; yet they remain some of the least understood. Their structure and function deviate from those of their cytoskeletal partners, F-actin and microtubules. IF networks show a unique combination of extensibility, flexibility and toughness that confers mechanical resilience to the cell. Vimentin is an IF protein expressed in mesenchymal cells. This review highlights exciting new results on the physical biology of vimentin intermediate filaments and their role in allowing whole cells and tissues to cope with stress.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Karsch S, Büchau F, Magin TM, Janshoff A. An intact keratin network is crucial for mechanical integrity and barrier function in keratinocyte cell sheets. Cell Mol Life Sci 2020; 77:4397-4411. [PMID: 31912195 PMCID: PMC11104923 DOI: 10.1007/s00018-019-03424-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.
Collapse
Affiliation(s)
- Susanne Karsch
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany
| | - Fanny Büchau
- Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Thomas M Magin
- Institute of Biology, University of Leipzig, Leipzig, Germany.
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
26
|
Schepers AV, Lorenz C, Köster S. Tuning intermediate filament mechanics by variation of pH and ion charges. NANOSCALE 2020; 12:15236-15245. [PMID: 32642745 DOI: 10.1039/d0nr02778b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cytoskeleton is formed by three types of filamentous proteins - microtubules, actin filaments, and intermediate filaments (IFs) - and enables cells to withstand external and internal forces. Vimentin is the most abundant IF protein in humans and assembles into 10 nm diameter filaments with remarkable mechanical properties, such as high extensibility and stability. It is, however, unclear to which extent these properties are influenced by the electrostatic environment. Here, we study the mechanical properties of single vimentin filaments by employing optical trapping combined with microfluidics. Force-strain curves, recorded at varying ion concentrations and pH values, reveal that the mechanical properties of single vimentin IFs are influenced by pH and ion concentration. By combination with Monte Carlo simulations, we relate these altered mechanics to electrostatic interactions of subunits within the filaments. We thus suggest possible mechanisms that allow cells to locally tune their stiffness without remodeling the entire cytoskeleton.
Collapse
Affiliation(s)
- Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
27
|
Lorenz C, Forsting J, Schepers AV, Kraxner J, Bauch S, Witt H, Klumpp S, Köster S. Lateral Subunit Coupling Determines Intermediate Filament Mechanics. PHYSICAL REVIEW LETTERS 2019; 123:188102. [PMID: 31763918 DOI: 10.1103/physrevlett.123.188102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 05/27/2023]
Abstract
The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin.
Collapse
Affiliation(s)
- Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Johanna Forsting
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Julia Kraxner
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Susanne Bauch
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hannes Witt
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammanstraße 2, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 7, 37077 Göttingen
| | - Stefan Klumpp
- Institute for Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|