1
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Kindlin-2 regulates the oncogenic activities of integrins and TGF-β in triple-negative breast cancer progression and metastasis. Oncogene 2024; 43:3291-3305. [PMID: 39300257 PMCID: PMC11534691 DOI: 10.1038/s41388-024-03166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Kindlin-2, an adapter protein, is dysregulated in various human cancers, including triple-negative breast cancer (TNBC), where it drives tumor progression and metastasis by influencing several cancer hallmarks. One well-established role of Kindlin-2 involves the regulation of integrin signaling, achieved by directly binding to the cytoplasmic tail of the integrin β subunit. In this study, we present novel insights into Kindlin-2's involvement in stabilizing the β1-Integrin:TGF-β type 1 receptor (TβRI) complexes, acting as a physical bridge that links β1-Integrin to TβRI. Loss of Kindlin-2 results in the degradation of this protein complex, leading to the inhibition of downstream oncogenic pathways. We used a diverse range of in vitro assays, including CRISPR/Cas9 gene editing, cell migration, 3D-tumorsphere formation and invasion, solid binding, co-immunoprecipitation, cell adhesion and spreading assays, as well as western blot and flow cytometry analyses, utilizing MDA-MB-231 and 4T1 TNBC cell lines. Additionally, preclinical in vivo mouse models of TNBC tumor progression and metastasis were employed to substantiate our findings. Our studies established the direct interaction between Kindlin-2 and β1-Integrin and between Kindlin-2 and TβRI. Disruption of these interactions, via CRISPR/Cas9-mediated knockout of Kindlin-2, led to the degradation of β1-Integrin and TβRI, resulting in the inhibition of oncogenic pathways downstream of both proteins, subsequently hindering tumor growth and metastasis. Treatment of Kindlin-2-deficient cells with the proteasome inhibitor MG-132 restored the expression of both β1-Integrin and TβRI. Furthermore, the rescue of Kindlin-2 expression reinstated their oncogenic activities in vitro and in vivo, while Kindlin-2 lacking domains involved in the interaction of Kindlin-2 with β1-Integrin or TβRI did not. This study identifies a novel function of Kindlin-2 in stabilizing the β1-Integrin:TβRI complexes and regulating their downstream oncogenic signaling. The translational implications of these findings are substantial, potentially unveiling new therapeutically targeted pathways crucial for the treatment of TNBC tumors.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- MetroHealth System, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA
| | - Lamyae El Khalki
- MetroHealth System, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA
| | - Wei Wang
- MetroHealth System, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA
| | | | - Khalid Sossey-Alaoui
- MetroHealth System, Cleveland, OH, USA.
- Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA.
| |
Collapse
|
2
|
Wang C, Li Q, Song K, Wang W, Zhang N, Dai L, Di W. Nanoparticle co-delivery of carboplatin and PF543 restores platinum sensitivity in ovarian cancer models through inhibiting platinum-induced pro-survival pathway activation. NANOSCALE ADVANCES 2024; 6:4082-4093. [PMID: 39114142 PMCID: PMC11302180 DOI: 10.1039/d4na00227j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Resistance to platinum-based chemotherapy is the major cause of poor prognosis and cancer-associated mortality in ovarian cancer patients, so novel therapeutic strategies to restore platinum sensitivity are needed to improve patient outcomes. Sphingosine Kinase (SphK) 1 is involved in regulating multiple pro-survival pathways, key mediators in the sensitivity of tumor cells toward platinum. By encapsulating CBP and the SphK1 inhibitor PF543 in PLGA (poly lactic-co-glycolic acid) nanoparticles, a dual-drug delivery system (C/PNPs) was formed to simultaneously deliver CBP and PF543. The physicochemical characteristics, cell uptake rate and biodistribution behavior of C/PNPs were evaluated. Then the anti-tumor ability of C/PNPs in vitro and in vivo was further investigated. The C/PNPs could deliver CBP and PF543 simultaneously to a platinum-insensitive cell line (SKOV3) both in vitro and in vivo. Furthermore, benefiting from the enhanced permeability and retention (EPR) effect of PLGA NPs, C/PNPs exhibited an improved tumor region accumulation. As a result, a synergistic anti-tumor effect was found in the SKOV3 tumor-bearing mice, with tumor volume inhibiting rates of 84.64% and no side effects in major organs. The mechanistic studies confirmed that the inhibition of SphK1 by PF543 sensitized SKOV3 cells to CBP chemotherapy, partly by inhibiting the CBP-induced activation of pro-survival pathways, including ERK, AKT and STAT3 signaling. Our study reveals that C/PNPs can serve as an efficient dual-drug delivery system to restore platinum sensitivity in ovarian cancer models partly through inhibiting platinum-induced pro-survival pathway activation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Qing Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
3
|
García-Chamé M, Wadhwani P, Pfeifer J, Schepers U, Niemeyer CM, Domínguez CM. A Versatile Microfluidic Platform for Extravasation Studies Based on DNA Origami-Cell Interactions. Angew Chem Int Ed Engl 2024; 63:e202318805. [PMID: 38687094 DOI: 10.1002/anie.202318805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Miguel García-Chamé
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Parvesh Wadhwani
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 2 (IBG 2), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juliana Pfeifer
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carmen M Domínguez
- Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces 1 (IBG 1), Hermann-von-Helmholtz-Platz, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
4
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
5
|
Ryoo H, Giovanni R, Kimmel H, Jain I, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303128. [PMID: 38348560 PMCID: PMC11022709 DOI: 10.1002/advs.202303128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/03/2023] [Indexed: 02/15/2024]
Abstract
Nonalcoholic fatty liver disease affects 30% of the United States population and its progression can lead to nonalcoholic steatohepatitis (NASH), and increased risks for cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, the use of stiffness-variable, extracellular matrix (ECM) protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation is demonstrated. These microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions are further employed. The 6 kPa fibronectin microgels are shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple-component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. The study envisions this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Regina Giovanni
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Hannah Kimmel
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Gregory H. Underhill
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
6
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Kindlin-2 Regulates the Oncogenic Activities of Integrins and TGF-β In Triple Negative Breast Cancer Progression and Metastasis. RESEARCH SQUARE 2024:rs.3.rs-3914650. [PMID: 38405979 PMCID: PMC10889066 DOI: 10.21203/rs.3.rs-3914650/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Kindlin-2, an adaptor protein, is dysregulated in various human cancers, including triple negative breast cancer (TNBC), where it drives tumor progression and metastasis by influencing several cancer hallmarks. One well-established role of Kindlin-2 involves the regulation of integrin signaling, achieved by directly binding to the cytoplasmic tail of the integrin β subunit. In this study, we present novel insights into Kindlin-2's involvement in stabilizing the β1-Integrin:TGF-β type 1 receptor (TβRI) complexes, acting as a physical bridge that links β1-Integrin to TβRI. The loss of Kindlin-2 results in the degradation of this protein complex, leading to the inhibition of downstream oncogenic pathways. Methods Our methodology encompassed a diverse range of in vitro assays, including CRISPR/Cas9 gene editing, cell migration, 3D tumorsphere formation and invasion, solid binding, co-immunoprecipitation, cell adhesion and spreading assays, as well as western blot and flow cytometry analyses, utilizing MDA-MB-231 and 4T1 TNBC cell lines. Additionally, preclinical in vivo mouse models of TNBC tumor progression and metastasis were employed to substantiate our findings. Results The investigation revealed that the direct interaction between Kindlin-2 and β1-Integrin is mediated through the C-terminal F3 domain of Kindlin-2, while the interaction between Kindlin-2 and TβRI is facilitated through the F2 domain of Kindlin-2. Disruption of this bridge, achieved via CRISPR/Cas9-mediated knockout of Kindlin-2, led to the degradation of β1-Integrin and TβRI, resulting in the inhibition of oncogenic pathways downstream of both proteins, subsequently hindering tumor growth and metastasis. Treatment of Kindlin-2-deficient cells with the proteasome inhibitor MG-132 restored the expression of both β1-Integrin and TβRI. Furthermore, the rescue of Kindlin-2 expression reinstated their oncogenic activities both in vitro and in vivo. Conclusions This study identifies a novel function of Kindlin-2 in stabilizing the β1-Integrin:TβR1 complexes and regulating their downstream oncogenic signaling. The translational implications of these findings are substantial, potentially unveiling new therapeutically targeted pathways crucial for the treatment of TNBC tumors.
Collapse
|
7
|
Lv X, Mao Z, Sun X, Liu B. Intratumoral Heterogeneity in Lung Cancer. Cancers (Basel) 2023; 15:2709. [PMID: 37345046 PMCID: PMC10216154 DOI: 10.3390/cancers15102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
The diagnosis and treatment of lung cancer (LC) is always a challenge. The difficulty in the decision of therapeutic schedule and diagnosis is directly related to intratumoral heterogeneity (ITH) in the progression of LC. It has been proven that most tumors emerge and evolve under the pressure of their living microenvironment, which involves genetic, immunological, metabolic, and therapeutic components. While most research on ITH revealed multiple mechanisms and characteristic, a systemic exposition of ITH in LC is still hard to find. In this review, we describe how ITH in LC develops from the perspective of space and time. We discuss elaborate details and affection of every aspect of ITH in LC and the relationship between them. Based on ITH in LC, we describe a more accurate multidisciplinary therapeutic strategy on LC and provide the newest opinion on the potential approach of LC therapy.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200437, China;
| | - Zixian Mao
- Pujiang Community Health Center of Minhang District of Shanghai, Shanghai 201114, China;
| | - Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200437, China;
- Institutes of Integrative Medicine, Fudan University, Shanghai 200437, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200437, China;
- Institutes of Integrative Medicine, Fudan University, Shanghai 200437, China
| |
Collapse
|
8
|
Ryoo H, Underhill GH. Combinatorial Microgels for 3D ECM Screening and Heterogeneous Microenvironmental Culture of Primary Human Hepatic Stellate Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539608. [PMID: 37214995 PMCID: PMC10197534 DOI: 10.1101/2023.05.05.539608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Non-alcoholic fatty liver disease affects 30% of the United States population and its progression can lead to non-alcoholic steatohepatitis (NASH), which can result in cirrhosis and hepatocellular carcinoma. NASH is characterized by a highly heterogeneous liver microenvironment created by the fibrotic activity of hepatic stellate cells (HSCs). While HSCs have been widely studied in 2D, further advancements in physiologically-relevant 3D culture platforms for the in vitro modeling of these heterogeneous environments are needed. In this study, we have demonstrated the use of stiffness-variable, ECM protein-conjugated polyethylene glycol microgels as 3D cell culture scaffolds to modulate HSC activation. We further employed these microgels as a high throughput ECM screening system to identify HSC matrix remodeling and metabolic activities in distinct heterogeneous microenvironmental conditions. In particular, 6 kPa fibronectin microgels were shown to significantly increase HSC matrix remodeling and metabolic activities in single or multiple component microenvironments. Overall, heterogeneous microenvironments consisting of multiple distinct ECM microgels promoted a decrease in HSC matrix remodeling and metabolic activities compared to homogeneous microenvironments. We envision this ECM screening platform being adapted to a broad number of cell types to aid the identification of ECM microenvironments that best recapitulate the desired phenotype, differentiation, or drug efficacy.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Gregory H. Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Gu Y, Dong B, He X, Qiu Z, Zhang J, Zhang M, Liu H, Pang X, Cui Y. The challenges and opportunities of αvβ3-based therapeutics in cancer: From bench to clinical trials. Pharmacol Res 2023; 189:106694. [PMID: 36775082 DOI: 10.1016/j.phrs.2023.106694] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Integrins are main cell adhesion receptors serving as linker attaching cells to extracellular matrix (ECM) and bidirectional hubs transmitting biochemical and mechanical signals between cells and their environment. Integrin αvβ3 is a critical family member of integrins and interacts with ECM proteins containing RGD tripeptide sequence. Accumulating evidence indicated that the abnormal expression of integrin αvβ3 was associated with various tumor progressions, including tumor initiation, sustained tumor growth, distant metastasis, drug resistance development, maintenance of stemness in cancer cells. Therefore, αvβ3 has been explored as a therapeutic target in various types of cancers, but there is no αvβ3 antagonist approved for human therapy. Targeting-integrin αvβ3 therapeutics has been a challenge, but lessons from the past are valuable to the development of innovative targeting approaches. This review systematically summarized the structure, signal transduction, regulatory role in cancer, and drug development history of integrin αvβ3, and also provided new insights into αvβ3-based therapeutics in cancer from bench to clinical trials, which would contribute to developing effective targeting αvβ3 agents for cancer treatment.
Collapse
Affiliation(s)
- Yanlun Gu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Bingqi Dong
- Department of General Surgery, Peking University First Hospital, Xishiku street, Xicheng District, 100034 Beijing, China
| | - Xu He
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Juqi Zhang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Mo Zhang
- Department of traditional Chinese and Western medicine,Peking University Of First Hospital, Xishiku street 8th,Xicheng District,10034 Beijing, China
| | - Haitao Liu
- Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Xueyuan Road 38, Haidian District, 100191 Beijing, China.
| |
Collapse
|
10
|
Preuß SL, Oehrl S, Zhang H, Döbel T, Engel U, Young JL, Spatz JP, Schäkel K. Immune complex-induced haptokinesis in human non-classical monocytes. Front Immunol 2023; 14:1078241. [PMID: 36936904 PMCID: PMC10014541 DOI: 10.3389/fimmu.2023.1078241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Formation and deposition of immune complexes (ICs) are hallmarks of various autoimmune diseases. Detection of ICs by IC receptors on leukocytes induces downstream signaling and shapes the local immune response. In many cases the pathological relevance of ICs is not well understood. We here show that ICs induce a distinct migratory response, i.e. haptokinesis in 6-sulfo LacNAc+ monocytes (slanMo) and in non-classical monocytes (ncMo) but not in intermediate (imMo) and classical monocytes (cMo). Using live imaging combined with automated cell tracking, we show that the main features of IC-dependent haptokinesis are elongation of the cell body, actin polarization at the leading edge, and highly directional migration. We find that CD16-dependent signaling mediates haptokinesis as blocking of CD16 or blocking SYK-signaling inhibited the migratory response. The activity of the metalloproteinase ADAM17 also modifies IC-dependent haptokinesis, likely at least partially via cleavage of CD16. Furthermore, using matrices with defined ligand spacing, we show that ligand density impacts the magnitude of the migratory response. Taken together, we have demonstrated that ICs induce a specific migratory response in ncMo but not in other monocyte subsets. Therefore, our work lays the groundwork for the investigation of IC-dependent haptokinesis in ncMo as a potential pathomechanism in IC-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Sophie L. Preuß
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Oehrl
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hao Zhang
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Engel
- Nikon Imaging Center, Heidelberg University, Heidelberg, Germany
| | - Jennifer L. Young
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Biomedical Engineering Department, National University of Singapore, Singapore, Singapore
| | - Joachim P. Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Biophysical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Knut Schäkel,
| |
Collapse
|
11
|
Tan Z, Zhang Z, Yu K, Yang H, Liang H, Lu T, Ji Y, Chen J, He W, Chen Z, Mei Y, Shen XL. Integrin subunit alpha V is a potent prognostic biomarker associated with immune infiltration in lower-grade glioma. Front Neurol 2022; 13:964590. [PMID: 36388191 PMCID: PMC9642104 DOI: 10.3389/fneur.2022.964590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 09/30/2023] Open
Abstract
As a member of integrin receptor family, ITGAV (integrin subunit α V) is involved in a variety of cell biological processes and overexpressed in various cancers, which may be a potential prognostic factor. However, its prognostic value and potential function in lower-grade glioma (LGG) are still unclear, and in terms of immune infiltration, it has not been fully elucidated. Here, the expression preference, prognostic value, and clinical traits of ITGAV were investigated using The Cancer Genome Atlas database (n = 528) and the Chinese Glioma Genome Atlas dataset (n = 458). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and gene set enrichment analysis (GSEA) were used to explore the biological function of ITGAV. Using R package "ssGSEA" analysis, it was found thatthe ITGAV mRNA expression level showed intense correlation with tumor immunity, such as tumor-infiltrating immune cells and multiple immune-related genes. In addition, ITGAV is associated with some immune checkpoints and immune checkpoint blockade (ICB) and response to chemotherapy. and the expression of ITGAV protein in LGG patients was verified via immunohistochemistry (IHC). ITGAV expression was higher in LGG tissues than in normal tissues (P < 0.001) and multifactor analysis showed that ITGAV mRNA expression was an independent prognostic factor for LGG overall survival (OS; hazard ratio = 2.113, 95% confidence interval = 1.393-3.204, P < 0.001). GSEA showed that ITGAV expression was correlated with Inflammatory response, complement response, KRAS signal, and interferon response. ssGSEA results showed a positive correlation between ITGAV expression and Th2 cell infiltration level. ITGAV mRNA was overexpressed in LGG, and high ITGAV mRNA levels were found to be associated with poor protein expression and poor OS. ITGAV is therefore a potential biomarker for the diagnosis and prognosis of LGG and may be a potential immunotherapy target.
Collapse
Affiliation(s)
- Zilong Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
- The Graduate Department, Jiangxi Medical College of Nanchang University Nanchang, Nanchang, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
- The Graduate Department, Jiangxi Medical College of Nanchang University Nanchang, Nanchang, China
| | - Kai Yu
- Department of Neurosurgery, People's Hospital of Wuhan University, Wuhan, China
| | - Huan Yang
- Department of Neurosurgery, Changde Hospital of Traditional Chinese Medicine, Changde, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianzhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Yulong Ji
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Junjun Chen
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Wei He
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuran Mei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Kurisinkal EE, Caroprese V, Koga MM, Morzy D, Bastings MMC. Selective Integrin α5β1 Targeting through Spatially Constrained Multivalent DNA-Based Nanoparticles. Molecules 2022; 27:molecules27154968. [PMID: 35956918 PMCID: PMC9370198 DOI: 10.3390/molecules27154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting cells specifically based on receptor expression levels remains an area of active research to date. Selective binding of receptors cannot be achieved by increasing the individual binding strength, as this does not account for differing distributions of receptor density across healthy and diseased cells. Engaging receptors above a threshold concentration would be desirable in devising selective diagnostics. Integrins are prime target candidates as they are readily available on the cell surface and have been reported to be overexpressed in diseases. Insights into their spatial organization would therefore be advantageous to design selective targeting agents. Here, we investigated the effect of activation method on integrin α5β1 clustering by immunofluorescence and modeled the global neighbor distances with input from an immuno-staining assay and image processing of microscopy images. This data was used to engineer spatially-controlled DNA-scaffolded bivalent ligands, which we used to compare trends in spatial-selective binding observed across HUVEC, CHO and HeLa in resting versus activated conditions in confocal microscopy images. For HUVEC and CHO, the data demonstrated an improved selectivity and localisation of binding for smaller spacings ~7 nm and ~24 nm, in good agreement with the model. A deviation from the mode predictions for HeLa was observed, indicative of a clustered, instead of homogeneous, integrin organization. Our findings demonstrate how low-technology imaging methods can guide the design of spatially controlled ligands to selectively differentiate between cell type and integrin activation state.
Collapse
Affiliation(s)
- Eva E. Kurisinkal
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Marianna M. Koga
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Maartje M. C. Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
13
|
Chen Y, Jia L, Zhu G, Wang W, Geng M, Lu H, Zhang Y, Zhou M, Zhang F, Cheng X. Sortase A-mediated cyclization of novel polycyclic RGD peptides for α νβ 3 integrin targeting. Bioorg Med Chem Lett 2022; 73:128888. [PMID: 35839966 DOI: 10.1016/j.bmcl.2022.128888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Cyclic arginine-glycine-aspartic (RGD) peptides that specifically bind to integrin ανβ3 have been developed for drug delivery, tracers, and imaging for tumor diagnosis and treatment. Herein, a series of polycyclic RGD peptides containing dual, tri, and tetra rings were designed and synthesized through sortase A-mediated ligation. An in vitro test on cell adhesion inhibition indicated that the RGD peptide containing tricylic structure exhibited outstanding potency and selectivity for ανβ3 integrin.
Collapse
Affiliation(s)
- Yajun Chen
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Lixuan Jia
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Guilan Zhu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Ming Geng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Hongxia Lu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Yan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Minghui Zhou
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Fangyan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Xiaozhong Cheng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
14
|
Vahala D, Choi YS. Modelling the Tumor Microenvironment: Recapitulating Nano- and Micro-Scale Properties that Regulate Tumor Progression. Front Cell Dev Biol 2022; 10:908799. [PMID: 35800896 PMCID: PMC9254080 DOI: 10.3389/fcell.2022.908799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer remains a significant burden with 1 in 8 women affected and metastasis posing a significant challenge for patient survival. Disease progression involves remodeling of the extracellular matrix (ECM). In breast cancer, tissue stiffness increases owing to an increase in collagen production by recruited cancer-associated fibroblasts (CAFs). These stromal modifications are notable during primary tumor growth and have a dualistic action by creating a hard capsule to prevent penetration of anti-cancer therapies and forming a favorable environment for tumor progression. Remodeling of the tumor microenvironment immediately presented to cells can include changes in protein composition, concentration and structural arrangement and provides the first mechanical stimuli in the metastatic cascade. Not surprisingly, metastatic cancer cells possess the ability to mechanically adapt, and their adaptability ensures not only survival but successful invasion within altered environments. In the past decade, the importance of the microenvironment and its regulatory role in diseases have gained traction and this is evident in the shift from plastic culture to the development of novel biomaterials that mimic in vivo tissue. With these advances, elucidations can be made into how ECM remodeling and more specifically, altered cell-ECM adhesions, regulate tumor growth and cancer cell plasticity. Such enabling tools in mechanobiology will identify fundamental mechanisms in cancer progression that eventually help develop preventative and therapeutic treatment from a clinical perspective. This review will focus on current platforms engineered to mimic the micro and nano-properties of the tumor microenvironment and subsequent understanding of mechanically regulated pathways in cancer.
Collapse
|
15
|
Pally D, Goutham S, Bhat R. Extracellular matrix as a driver for intratumoral heterogeneity. Phys Biol 2022; 19. [PMID: 35545075 DOI: 10.1088/1478-3975/ac6eb0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
The architecture of an organ is built through interactions between its native cells and its connective tissue consisting of stromal cells and the extracellular matrix (ECM). Upon transformation through tumorigenesis, such interactions are disrupted and replaced by a new set of intercommunications between malignantly transformed parenchyma, an altered stromal cell population, and a remodeled ECM. In this perspective, we propose that the intratumoral heterogeneity of cancer cell phenotypes is an emergent property of such reciprocal intercommunications, both biochemical and mechanical-physical, which engender and amplify the diversity of cell behavioral traits. An attempt to assimilate such findings within a framework of phenotypic plasticity furthers our understanding of cancer progression.
Collapse
Affiliation(s)
- Dharma Pally
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Shyamili Goutham
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Ramray Bhat
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| |
Collapse
|
16
|
Fischer NG, Kobe AC, Dai J, He J, Wang H, Pizarek JA, De Jong DA, Ye Z, Huang S, Aparicio C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater 2022; 141:70-88. [PMID: 34971784 PMCID: PMC8898307 DOI: 10.1016/j.actbio.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexandra C Kobe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Jinhong Dai
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Hongning Wang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States.
| |
Collapse
|
17
|
Enkhbat M, Zhong B, Chang R, Geng J, Lu LS, Chen YJ, Wang PY. Harnessing Focal Adhesions to Accelerate p53 Accumulation and Anoikis of A549 Cells Using Colloidal Self-Assembled Patterns (cSAPs). ACS APPLIED BIO MATERIALS 2022; 5:322-333. [PMID: 35034455 DOI: 10.1021/acsabm.1c01109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extracellular matrix (ECM) of the tumor microenvironment (TME), including topography and biological molecules, is crucial in cancer cell attachment, growth, and even the sensitivity to the chemo and cell drugs treatment. This study hypothesizes that mimic ECM structures can alter the attachment and drug sensitivity of cancer cells. A family of artificial ECM called colloidal self-assembled patterns (cSAPs) was fabricated to mimic tumor ECM structures. Cell adhesion, proliferation, and drug sensitivity of the A549 non-small cell lung cancer (NSCLC) cells were studied on 24 cSAPs, named cSAP#1-cSAP#24, where surface topography and wettability were distinct. The results showed that cell adhesion and cell spreading were generally reduced on cSAPs compared to the flat controls. In addition, the synergistic effect of cSAPs and several chemo drugs on cell survival was investigated. Interestingly, A549 cells were more sensitive to the combination of doxorubicin and cSAP#4. Under this condition, the focal adhesion kinase (FAK) signaling was downregulated while p53 signaling was upregulated, confirmed by real-time PCR and western blot analysis. It indicates that the specific surface structure could induce higher drug sensitivity and in vitro anoikis of A549 cells. A serum alternative, human platelet lysate (hPL), and different cSAPs were examined to verify our hypothesis. The result further confirmed that cell adhesion strongly affected the drug sensitivity of A549 cells. This study demonstrates that the tumor ECM is vital in cancer cell activity and drug sensitivity; therefore, it should be considered in drug discovery and therapeutic regimens.
Collapse
Affiliation(s)
- Myagmartsend Enkhbat
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Boya Zhong
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ray Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jin Geng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Peng-Yuan Wang
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China.,Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
18
|
Abstract
Dormancy is an evolutionarily conserved protective mechanism widely observed in nature. A pathological example is found during cancer metastasis, where cancer cells disseminate from the primary tumor, home to secondary organs, and enter a growth-arrested state, which could last for decades. Recent studies have pointed toward the microenvironment being heavily involved in inducing, preserving, or ceasing this dormant state, with a strong focus on identifying specific molecular mechanisms and signaling pathways. Increasing evidence now suggests the existence of an interplay between intracellular as well as extracellular biochemical and mechanical cues in guiding such processes. Despite the inherent complexities associated with dormancy, proliferation, and growth of cancer cells and tumor tissues, viewing these phenomena from a physical perspective allows for a more global description, independent from many details of the systems. Building on the analogies between tissues and fluids and thermodynamic phase separation concepts, we classify a number of proposed mechanisms in terms of a thermodynamic metastability of the tumor with respect to growth. This can be governed by interaction with the microenvironment in the form of adherence (wetting) to a substrate or by mechanical confinement of the surrounding extracellular matrix. By drawing parallels with clinical and experimental data, we advance the notion that the local energy minima, or metastable states, emerging in the tissue droplet growth kinetics can be associated with a dormant state. Despite its simplicity, the provided framework captures several aspects associated with cancer dormancy and tumor growth.
Collapse
|
19
|
Singh JP, Young JL. The cardiac nanoenvironment: form and function at the nanoscale. Biophys Rev 2021; 13:625-636. [PMID: 34765045 PMCID: PMC8555021 DOI: 10.1007/s12551-021-00834-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mechanical forces in the cardiovascular system occur over a wide range of length scales. At the whole organ level, large scale forces drive the beating heart as a synergistic unit. On the microscale, individual cells and their surrounding extracellular matrix (ECM) exhibit dynamic reciprocity, with mechanical feedback moving bidirectionally. Finally, in the nanometer regime, molecular features of cells and the ECM show remarkable sensitivity to mechanical cues. While small, these nanoscale properties are in many cases directly responsible for the mechanosensitive signaling processes that elicit cellular outcomes. Given the inherent challenges in observing, quantifying, and reconstituting this nanoscale environment, it is not surprising that this landscape has been understudied compared to larger length scales. Here, we aim to shine light upon the cardiac nanoenvironment, which plays a crucial role in maintaining physiological homeostasis while also underlying pathological processes. Thus, we will highlight strategies aimed at (1) elucidating the nanoscale components of the cardiac matrix, and (2) designing new materials and biosystems capable of mimicking these features in vitro.
Collapse
Affiliation(s)
- Jashan P Singh
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | - Jennifer L Young
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, 117575 Singapore, Singapore
| |
Collapse
|
20
|
Chin IL, Hool L, Choi YS. Interrogating cardiac muscle cell mechanobiology on stiffness gradient hydrogels. Biomater Sci 2021; 9:6795-6806. [PMID: 34542112 DOI: 10.1039/d1bm01061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular matrix (ECM) remodeling is a major facet of cardiac development and disease, yet our understanding of cardiomyocyte mechanotransduction remains limited. To enhance our understanding of cardiomyocyte mechanosensation, we studied stiffness-driven changes to cell morphology and mechanomarker expression in H9C2 cells and neonatal rat cardiomyocytes (NRCMs). Linear stiffness gradient polyacrylamide hydrogels (2-33 kPa) coated with ECM proteins including Collagen I (Col), Fibronectin (Fn) or Laminin (Ln) were used to represent necrotic, healthy, and infarcted cardiac tissue on a continuous stiffness gradient. Cell size, cell shape and nuclear size were found to be mechanosensitive in H9C2 cells, as was the expression or nuclear translocalization of the mechanomarkers Lamin-A, YAP, and MRTF-A. Minor differences were observed between the different ECM coatings, with the same overarching stiffness-dependent trends being observed across Col, Fn and Ln coated hydrogels. Inhibition of mechanotransduction in H9C2 cells using blebbistatin or Y27632 resulted in disruptions to cell shape, nuclear shape, and nuclear size, however, trends in cell size and mechanomarker expression were not significantly attenuated. Mechanosensation in NRCMs was much less marked, with no significant changes in cell morphology being detected, although YAP did become increasingly nuclear localized with increasing stiffness. In α-actinin positive cells, striations formed with regular structure and frequency at all stiffnesses for Col and Fn coated hydrogels, but not Ln coated gels. In this study, we used our stiffness gradient hydrogels to comprehensively map the relationship between ECM stiffness and cardiac cell phenotype and found that less mature H9C2 cardiac cells are more sensitive to ECM changes than the more developed neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia. .,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
21
|
Single-cell adhesion strength and contact density drops in the M phase of cancer cells. Sci Rep 2021; 11:18500. [PMID: 34531409 PMCID: PMC8445979 DOI: 10.1038/s41598-021-97734-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
The high throughput, cost effective and sensitive quantification of cell adhesion strength at the single-cell level is still a challenging task. The adhesion force between tissue cells and their environment is crucial in all multicellular organisms. Integrins transmit force between the intracellular cytoskeleton and the extracellular matrix. This force is not only a mechanical interaction but a way of signal transduction as well. For instance, adhesion-dependent cells switch to an apoptotic mode in the lack of adhesion forces. Adhesion of tumor cells is a potential therapeutic target, as it is actively modulated during tissue invasion and cell release to the bloodstream resulting in metastasis. We investigated the integrin-mediated adhesion between cancer cells and their RGD (Arg-Gly-Asp) motif displaying biomimetic substratum using the HeLa cell line transfected by the Fucci fluorescent cell cycle reporter construct. We employed a computer-controlled micropipette and a high spatial resolution label-free resonant waveguide grating-based optical sensor calibrated to adhesion force and energy at the single-cell level. We found that the overall adhesion strength of single cancer cells is approximately constant in all phases except the mitotic (M) phase with a significantly lower adhesion. Single-cell evanescent field based biosensor measurements revealed that at the mitotic phase the cell material mass per unit area inside the cell-substratum contact zone is significantly less, too. Importantly, the weaker mitotic adhesion is not simply a direct consequence of the measured smaller contact area. Our results highlight these differences in the mitotic reticular adhesions and confirm that cell adhesion is a promising target of selective cancer drugs as the vast majority of normal, differentiated tissue cells do not enter the M phase and do not divide.
Collapse
|
22
|
Zhang K, Zhang H, Gao YH, Wang JQ, Li Y, Cao H, Hu Y, Wang L. A Monotargeting Peptidic Network Antibody Inhibits More Receptors for Anti-Angiogenesis. ACS NANO 2021; 15:13065-13076. [PMID: 34323463 DOI: 10.1021/acsnano.1c02194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The overexpression of growth factors and receptors on neovascular endothelial cells (ECs) and their binding may promote the abnormal growth of new blood vessels, leading to corneal neovascularization (CNV). Normally, monoclonal antibodies may bind and block only one growth factor or receptor, such as bevacizumab binding and blocking vascular endothelial growth factor (VEGF). Herein, we develop a monotargeting peptidic network antibody (pepnetibody) that blocks multiple receptors on the membrane of ECs through forming a fibrous network and ultimately achieves high-efficient treatment of CNV. The pepnetibody could bind to integrin αvβ3 in particulate formulation and in situ fibrillogenesis on ECs, mimicking the process of fibronectin fibrillogenesis on the cell membrane. The in situ formed peptidic network could firmly block integrin and cover other angiogenesis-related receptors, such as VEGF receptor-2 and neuropilin-1, exhibiting competitive efficacy of antiangiogenesis compared with traditional monoclonal antibody bevacizumab with 97.7 times lower dose.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing, 100083, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hui Zhang
- Shanghai Jiao Tong University School of Medicine, 227 Chongqing South Road, Shanghai, 200025, China
| | - Yong-Hong Gao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing, 100083, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jia-Qi Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yuan Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Hui Cao
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing, 100083, China
| | - Ying Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600, Yishan Road, Shanghai, 200233, China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| |
Collapse
|
23
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
24
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
25
|
Wong SHD, Xu X, Chen X, Xin Y, Xu L, Lai CHN, Oh J, Wong WKR, Wang X, Han S, You W, Shuai X, Wong N, Tan Y, Duan L, Bian L. Manipulation of the Nanoscale Presentation of Integrin Ligand Produces Cancer Cells with Enhanced Stemness and Robust Tumorigenicity. NANO LETTERS 2021; 21:3225-3236. [PMID: 33764789 DOI: 10.1021/acs.nanolett.1c00501] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing strategies for efficient expansion of cancer stem-like cells (CSCs) in vitro will help investigate the mechanism underlying tumorigenesis and cancer recurrence. Herein, we report a dynamic culture substrate tethered with integrin ligand-bearing magnetic nanoparticles via a flexible polymeric linker to enable magnetic manipulation of the nanoscale ligand tether mobility. The cancer cells cultured on the substrate with high ligand tether mobility develop into large semispherical colonies with CSCs features, which can be abrogated by magnetically restricting the ligand tether mobility. Mechanistically, the substrate with high ligand tether mobility suppresses integrin-mediated mechanotransduction and histone-related methylation, thereby enhancing cancer cell stemness. The culture-derived high-stemness cells can generate tumors both locally and at the distant lung and uterus much more efficiently than the low-stemness cells. We believe that this magnetic nanoplatform provides a promising strategy for investigating the dynamic interaction between CSCs and the microenvironment and establishing a cost-effective tumor spheroid model.
Collapse
Affiliation(s)
- Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xi Chen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Ying Xin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Limei Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Chun Him Nathanael Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiwon Oh
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wai Ki Ricky Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xuemei Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shisong Han
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenxing You
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Surgery at Sir Y. K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Nathalie Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Department of Surgery at Sir Y. K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518000, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
26
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
27
|
Kubiak A, Chighizola M, Schulte C, Bryniarska N, Wesołowska J, Pudełek M, Lasota M, Ryszawy D, Basta-Kaim A, Laidler P, Podestà A, Lekka M. Stiffening of DU145 prostate cancer cells driven by actin filaments - microtubule crosstalk conferring resistance to microtubule-targeting drugs. NANOSCALE 2021; 13:6212-6226. [PMID: 33885607 DOI: 10.1039/d0nr06464e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The crucial role of microtubules in the mitotic-related segregation of chromosomes makes them an excellent target for anticancer microtubule targeting drugs (MTDs) such as vinflunine (VFL), colchicine (COL), and docetaxel (DTX). MTDs affect mitosis by directly perturbing the structural organisation of microtubules. By a direct assessment of the biomechanical properties of prostate cancer DU145 cells exposed to different MTDs using atomic force microscopy, we show that cell stiffening is a response to the application of all the studied MTDs (VFL, COL, DTX). Changes in cellular rigidity are typically attributed to remodelling of the actin filaments in the cytoskeleton. Here, we demonstrate that cell stiffening can be driven by crosstalk between actin filaments and microtubules in MTD-treated cells. Our findings improve the interpretation of biomechanical data obtained for living cells in studies of various physiological and pathological processes.
Collapse
Affiliation(s)
- Andrzej Kubiak
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Amos SE, Choi YS. The Cancer Microenvironment: Mechanical Challenges of the Metastatic Cascade. Front Bioeng Biotechnol 2021; 9:625859. [PMID: 33644019 PMCID: PMC7907606 DOI: 10.3389/fbioe.2021.625859] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The metastatic cascade presents a significant challenge to patient survival in the fight against cancer. As metastatic cells disseminate and colonize a secondary site, stepwise exposure to microenvironment-specific mechanical stimuli influences and protects successful metastasis. Following cancerous transformation and associated cell recruitment, the tumor microenvironment (TME) becomes a mechanically complex niche, owing to changes in extracellular matrix (ECM) stiffness and architecture. The ECM mechanically reprograms the cancer cell phenotype, priming cells for invasion. 2D and 3D hydrogel-based culture platforms approximate these environmental variables and permit investigations into tumor-dependent shifts in malignancy. Following TME modification, malignant cells must invade the local ECM, driven toward blood, and lymph vessels by sensing biochemical and biophysical gradients. Microfluidic chips recreate cancer-modified ECM tracks, empowering studies into modes of confined motility. Intravasation and extravasation consist of complex cancer-endothelial interactions that modify an otherwise submicron-scale migration. Perfused microfluidic platforms facilitate the physiological culture of endothelial cells and thus enhance the translatability of basic research into metastatic transendothelial migration. These platforms also shed light on the poorly understood circulating tumor cell, which defies adherent cell norms by surviving the shear stress of blood flow and avoiding anoikis. Metastatic cancers possess the plasticity to adapt to new mechanical conditions, permitting their invasiveness, and ensuring their survival against anomalous stimuli. Here, we review the cellular mechanics of metastasis in the context of current in vitro approaches. Advances that further expose the mechanisms underpinning the phenotypic fluidity of metastatic cancers remain central to the development of novel interventions targeting cancer.
Collapse
Affiliation(s)
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
29
|
Thai VL, Griffin KH, Thorpe SW, Randall RL, Leach JK. Tissue engineered platforms for studying primary and metastatic neoplasm behavior in bone. J Biomech 2021; 115:110189. [PMID: 33385867 PMCID: PMC7855491 DOI: 10.1016/j.jbiomech.2020.110189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Cancer is the second leading cause of death in the United States, claiming more than 560,000 lives each year. Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and young adults, while bone is a common site of metastasis for tumors initiating from other tissues. The heterogeneity, continual evolution, and complexity of this disease at different stages of tumor progression drives a critical need for physiologically relevant models that capture the dynamic cancer microenvironment and advance chemotherapy techniques. Monolayer cultures have been favored for cell-based research for decades due to their simplicity and scalability. However, the nature of these models makes it impossible to fully describe the biomechanical and biochemical cues present in 3-dimensional (3D) microenvironments, such as ECM stiffness, degradability, surface topography, and adhesivity. Biomaterials have emerged as valuable tools to model the behavior of various cancers by creating highly tunable 3D systems for studying neoplasm behavior, screening chemotherapeutic drugs, and developing novel treatment delivery techniques. This review highlights the recent application of biomaterials toward the development of tumor models, details methods for their tunability, and discusses the clinical and therapeutic applications of these systems.
Collapse
Affiliation(s)
- Victoria L Thai
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States
| | - Katherine H Griffin
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, United States
| | - Steven W Thorpe
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| | - R Lor Randall
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, United States; Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States.
| |
Collapse
|
30
|
Khatua C, Min S, Jung HJ, Shin JE, Li N, Jun I, Liu HW, Bae G, Choi H, Ko MJ, Jeon YS, Kim YJ, Lee J, Ko M, Shim G, Shin H, Lee S, Chung S, Kim YK, Song JJ, Dravid VP, Kang H. In Situ Magnetic Control of Macroscale Nanoligand Density Regulates the Adhesion and Differentiation of Stem Cells. NANO LETTERS 2020; 20:4188-4196. [PMID: 32406688 DOI: 10.1021/acs.nanolett.0c00559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing materials with remote controllability of macroscale ligand presentation can mimic extracellular matrix (ECM) remodeling to regulate cellular adhesion in vivo. Herein, we designed charged mobile nanoligands with superparamagnetic nanomaterials amine-functionalized and conjugated with polyethylene glycol linker and negatively charged RGD ligand. We coupled negatively a charged nanoligand to a positively charged substrate by optimizing electrostatic interactions to allow reversible planar movement. We demonstrate the imaging of both macroscale and in situ nanoscale nanoligand movement by magnetically attracting charged nanoligand to manipulate macroscale ligand density. We show that in situ magnetic control of attracting charged nanoligand facilitates stem cell adhesion, both in vitro and in vivo, with reversible control. Furthermore, we unravel that in situ magnetic attraction of charged nanoligand stimulates mechanosensing-mediated differentiation of stem cells. This remote controllability of ECM-mimicking reversible ligand variations is promising for regulating diverse reparative cellular processes in vivo.
Collapse
Affiliation(s)
- Chandra Khatua
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Jung
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeong Eun Shin
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Na Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Indong Jun
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hui-Wen Liu
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Min Jun Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yoo Sang Jeon
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Republic of Korea
| | - Joonbum Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minji Ko
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyubo Shim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hongchul Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sangbum Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seok Chung
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
- School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|