1
|
Zhang LL, Zhong CB, Huang TJ, Zhang LM, Yan F, Ying YL. High-throughput single biomarker identification using droplet nanopore. Chem Sci 2024; 15:8355-8362. [PMID: 38846401 PMCID: PMC11151865 DOI: 10.1039/d3sc06795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 06/09/2024] Open
Abstract
Biomarkers are present in various metabolism processes, demanding precise and meticulous analysis at the single-molecule level for accurate clinical diagnosis. Given the need for high sensitivity, biological nanopore have been applied for single biomarker sensing. However, the detection of low-volume biomarkers poses challenges due to their low concentrations in dilute buffer solutions, as well as difficulty in parallel detection. Here, a droplet nanopore technique is developed for low-volume and high-throughput single biomarker detection at the sub-microliter scale, which shows a 2000-fold volume reduction compared to conventional setups. To prove the concept, this nanopore sensing platform not only enables multichannel recording but also significantly lowers the detection limit for various types of biomarkers such as angiotensin II, to 42 pg. This advancement enables direct biomarker detection at the picogram level. Such a leap forward in detection capability positions this nanopore sensing platform as a promising candidate for point-of-care testing of biomarker at single-molecule level, while substantially minimizing the need for sample dilution.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Cheng-Bing Zhong
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Ting-Jing Huang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zhang
- School of Electronic Science and Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Feng Yan
- School of Electronic Science and Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
2
|
Zhang X, Bai Y, Liu S, Yang J, Hu N. Electrokinetic Nanorod Translocation through a Dual-Nanopipette. ACS OMEGA 2024; 9:24050-24059. [PMID: 38854563 PMCID: PMC11154894 DOI: 10.1021/acsomega.4c02630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Glass nanopipettes, as important sensing tools, have attracted great interest due to their wide range of applications in detecting single molecules, nanoparticles, and cells. In this study, we investigated the translocation behavior of nanorod particles through dual-nanopipettes using a transient continuum-based model based on an arbitrary Lagrangian-Eulerian approach. Our findings indicate that the translocation of nanorods is slowed down in the dual-nanopipette system, especially in the dual-nanopipette system with a nanobridge. These results are in qualitative agreement with previous experimental findings reported in the literature. Additionally, the translocation of nanorods is influenced by factors such as bulk concentration, initial location of the nanorod, and surface charge of the nanopipette. Notably, when the surface charge density of the nanopipette is relatively high and the initial location of the nanorod is in the reservoir, the nanorod can hardly enter the nanopipette, resulting in a relatively low translocation efficiency. However, the translocation efficiency can be improved by initially positioning the nanorod in one of the barrels. The resulting dual-blockade current signal can be used to correlate the characteristics of the nanorod.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School
of Smart Health, Chongqing College of Electronic
Engineering, Chongqing 401331, China
| | - Yaqi Bai
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Shiping Liu
- School
of Safety Engineering, Chongqing University
of Science and Technology, Chongqing 401331, China
| | - Jun Yang
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education
and Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Ahmed SA, Liu Y, Xiong T, Zhao Y, Xie B, Pan C, Ma W, Yu P. Iontronic Sensing Based on Confined Ion Transport. Anal Chem 2024; 96:8056-8077. [PMID: 38663001 DOI: 10.1021/acs.analchem.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- Saud Asif Ahmed
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yueru Zhao
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Xie
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Pan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjie Ma
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Stuber A, Cavaccini A, Manole A, Burdina A, Massoud Y, Patriarchi T, Karayannis T, Nakatsuka N. Interfacing Aptamer-Modified Nanopipettes with Neuronal Media and Ex Vivo Brain Tissue. ACS MEASUREMENT SCIENCE AU 2024; 4:92-103. [PMID: 38404490 PMCID: PMC10885324 DOI: 10.1021/acsmeasuresciau.3c00047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 02/27/2024]
Abstract
Aptamer-functionalized biosensors exhibit high selectivity for monitoring neurotransmitters in complex environments. We translated nanoscale aptamer-modified nanopipette sensors to detect endogenous dopamine release in vitro and ex vivo. These sensors employ quartz nanopipettes with nanoscale pores (ca. 10 nm diameter) that are functionalized with aptamers that enable the selective capture of dopamine through target-specific conformational changes. The dynamic behavior of aptamer structures upon dopamine binding leads to the rearrangement of surface charge within the nanopore, resulting in measurable changes in ionic current. To assess sensor performance in real time, we designed a fluidic platform to characterize the temporal dynamics of nanopipette sensors. We then conducted differential biosensing by deploying control sensors modified with nonspecific DNA alongside dopamine-specific sensors in biological milieu. Our results confirm the functionality of aptamer-modified nanopipettes for direct measurements in undiluted complex fluids, specifically in the culture media of human-induced pluripotent stem cell-derived dopaminergic neurons. Moreover, sensor implantation and repeated measurements in acute brain slices was possible, likely owing to the protected sensing area inside nanoscale DNA-filled orifices, minimizing exposure to nonspecific interferents and preventing clogging. Further, differential recordings of endogenous dopamine released through electrical stimulation in the dorsolateral striatum demonstrate the potential of aptamer-modified nanopipettes for ex vivo recordings with unprecedented spatial resolution and reduced tissue damage.
Collapse
Affiliation(s)
- Annina Stuber
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| | - Anna Cavaccini
- Laboratory
of Neural Circuit Assembly, Brain Research Institute, University of Zurich, Zurich CH-8057, Switzerland
- Neuroscience
Center Zurich, University and ETH Zurich, Zurich CH-8057, Switzerland
| | - Andreea Manole
- iXCells
Biotechnologies, Inc., San Diego, California 92131, United States
| | - Anna Burdina
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| | - Yassine Massoud
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| | - Tommaso Patriarchi
- Neuroscience
Center Zurich, University and ETH Zurich, Zurich CH-8057, Switzerland
- Institute
of Pharmacology and Toxicology, University
of Zurich, Zurich CH-8057, Switzerland
| | - Theofanis Karayannis
- Laboratory
of Neural Circuit Assembly, Brain Research Institute, University of Zurich, Zurich CH-8057, Switzerland
- Neuroscience
Center Zurich, University and ETH Zurich, Zurich CH-8057, Switzerland
| | - Nako Nakatsuka
- Laboratory
of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland
| |
Collapse
|
5
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
6
|
Gwon HJ, Lim D, Nam Y, Ahn HS. Quadruple nanoelectrode assembly for simultaneous analysis of multiple redox species and its application to multi-channel scanning electrochemical microscopy. Anal Chim Acta 2022; 1226:340287. [DOI: 10.1016/j.aca.2022.340287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
|
7
|
Das N, Chakraborty B, RoyChaudhuri C. A review on nanopores based protein sensing in complex analyte. Talanta 2022; 243:123368. [DOI: 10.1016/j.talanta.2022.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/30/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022]
|
8
|
Lin K, Chen C, Wang C, Lian P, Wang Y, Xue S, Sha J, Chen Y. Fabrication of solid-state nanopores. NANOTECHNOLOGY 2022; 33:272003. [PMID: 35349996 DOI: 10.1088/1361-6528/ac622b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanopores are valuable single-molecule sensing tools that have been widely applied to the detection of DNA, RNA, proteins, viruses, glycans, etc. The prominent sensing platform is helping to improve our health-related quality of life and accelerate the rapid realization of precision medicine. Solid-state nanopores have made rapid progress in the past decades due to their flexible size, structure and compatibility with semiconductor fabrication processes. With the development of semiconductor fabrication techniques, materials science and surface chemistry, nanopore preparation and modification technologies have made great breakthroughs. To date, various solid-state nanopore materials, processing technologies, and modification methods are available to us. In the review, we outline the recent advances in nanopores fabrication and analyze the virtues and limitations of various membrane materials and nanopores drilling techniques.
Collapse
Affiliation(s)
- Kabin Lin
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Congsi Wang
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Peiyuan Lian
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Yan Wang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Song Xue
- Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
9
|
Abstract
Single-molecule detection and characterization with nanopores is a powerful technique that does not require labeling. Multinanopore systems, especially double nanopores, have attracted wide attention and have been applied in many fields. However, theoretical studies of electrokinetic ion transport in nanopores mainly focus on single nanopores. In this paper, for the first time, a theoretical study of pH-regulated double-barreled nanopores is conducted using three-dimensional Poisson-Nernst-Planck equations and Navier-Stokes equations. Four ionic species and the surface chemistry on the walls of the nanopores are included. The results demonstrate that the properties of the bulk salt solution significantly affect nanopore conductivity and ion transport phenomena in nanopores. There are two ion-enriched zones and two ion-depleted zones in double-barreled nanopores. Due to the symmetry of the double-barreled nanopore structure and surface charge density, there is no ionic rectification effect in double-barreled nanopores. The ion selectivity is similar to that of conventional single pH-regulated nanopores.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
10
|
Zhang J, Zhang L, Li Z, Zhang Q, Li Y, Ying Y, Fu Y. Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101665. [PMID: 34278716 DOI: 10.1002/smll.202101665] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Owing to the urgent need for electrochemical analysis and sensing of trace target molecules in various fields such as medical diagnosis, agriculture and food safety, and environmental monitoring, signal amplification is key to promoting analysis and sensing performance. The nanoconfinement effect, derived from nanoconfined spaces and interfaces with sizes approaching those of target molecules, has witnessed rapid development for ultra-sensitive analyzing and sensing. In this review, the two main types of nanoconfinement systems - confined nanochannels and planes - are assessed and recent progress is highlighted. The merits of each nanoconfinement system, the nanoconfinement effect mechanisms, and applications for electrochemical analysis and sensing are summarized and discussed. This review aims to help deepen the understanding of nanoconfinement devices and their effects in order to develop new analysis and sensing applications for researchers in various fields.
Collapse
Affiliation(s)
- Jie Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Zhishang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
11
|
Fried JP, Swett JL, Nadappuram BP, Mol JA, Edel JB, Ivanov AP, Yates JR. In situ solid-state nanopore fabrication. Chem Soc Rev 2021; 50:4974-4992. [PMID: 33623941 DOI: 10.1039/d0cs00924e] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanopores in solid-state membranes are promising for a wide range of applications including DNA sequencing, ultra-dilute analyte detection, protein analysis, and polymer data storage. Techniques to fabricate solid-state nanopores have typically been time consuming or lacked the resolution to create pores with diameters down to a few nanometres, as required for the above applications. In recent years, several methods to fabricate nanopores in electrolyte environments have been demonstrated. These in situ methods include controlled breakdown (CBD), electrochemical reactions (ECR), laser etching and laser-assisted controlled breakdown (la-CBD). These techniques are democratising solid-state nanopores by providing the ability to fabricate pores with diameters down to a few nanometres (i.e. comparable to the size of many analytes) in a matter of minutes using relatively simple equipment. Here we review these in situ solid-state nanopore fabrication techniques and highlight the challenges and advantages of each method. Furthermore we compare these techniques by their desired application and provide insights into future research directions for in situ nanopore fabrication methods.
Collapse
Affiliation(s)
- Jasper P Fried
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Jacob L Swett
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | - Binoy Paulose Nadappuram
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 82 Wood Lane, W12 0BZ, UK
| | - Jan A Mol
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, E1 4NS, UK
| | - Joshua B Edel
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 82 Wood Lane, W12 0BZ, UK
| | - Aleksandar P Ivanov
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 82 Wood Lane, W12 0BZ, UK
| | - James R Yates
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
12
|
Arima A, Tsutsui M, Washio T, Baba Y, Kawai T. Solid-State Nanopore Platform Integrated with Machine Learning for Digital Diagnosis of Virus Infection. Anal Chem 2020; 93:215-227. [PMID: 33251802 DOI: 10.1021/acs.analchem.0c04353] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Akihide Arima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Washio
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|