1
|
Boym MA, Pototskiy RA, Podyacheva ES, Muratov DV, Nelyubina YV, Perekalin DS. Planar chiral arene ruthenium complexes derived from R-carvone. Dalton Trans 2025; 54:5655-5658. [PMID: 40094431 DOI: 10.1039/d5dt00344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Natural R-carvone was converted into chiral 1-aryl-2-methyl-5-isopropyl-cyclohexadienes using a cross-coupling reaction as a key step. These dienes react with RuCl3 to give planar-chiral complexes [(arene)RuCl2]2 in 70-75% yields. Complex [(1-Ph-2-Me-5-iPr-C6H3)RuCl2]2, a chiral analogue of the classical catalyst [(cymene)RuCl2]2, promotes C-H activation of N-methoxy-benzamide and intramolecular insertion of a diazo compound into a C-H bond, but gives products with low stereoselectivity.
Collapse
Affiliation(s)
- Mikhail A Boym
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Roman A Pototskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
| | - Evgeniya S Podyacheva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| | - Dmitry V Muratov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
| | - Yulia V Nelyubina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences, 1 Acad. Semenov str., 142432, Chernogolovka, Russia
| | - Dmitry S Perekalin
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., Moscow, 119334, Russia.
- National Research University Higher School of Economics, 7 Vavilova str., Moscow, 117312, Russia
| |
Collapse
|
2
|
Kim R, Wu Y, Tong R. Asymmetric total syntheses of sarglamides A, C, D, E, and F. Chem Sci 2024; 15:12856-12860. [PMID: 39148793 PMCID: PMC11322964 DOI: 10.1039/d4sc03553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Sarglamides A-E were identified as a structurally new class of alkaloids with potential application for inflammation-associated diseases. Reported is the first asymmetric total synthesis of sarglamides A, C, D, E, and F within 7 steps, featuring an intermolecular Diels-Alder cycloaddition of (S)-phellandrene and 1,4-benzoquinone and intramolecular (aza-)Michael addition to construct the tetracyclic core of sarglamides. Importantly, our work demonstrated that the hypothetic Diels-Alder reaction of α-phellandrene with dienophile toussaintine C (or analogues) originally proposed as a biosynthetic pathway was not viable under non-enzymatic conditions. Additionally, we discovered novel and efficient double cyclization (cycloetherification and oxa-Michael cyclization) to construct the core framework of sarglamides E and D. Our concise synthetic strategy might allow rapid access to a library of sarglamide analogues for further evaluation of their bioactivity and mode of action.
Collapse
Affiliation(s)
- Ryungwoo Kim
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Yanting Wu
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology Clearwater Bay Kowloon Hong Kong China +86 23581594 +86 23587357
| |
Collapse
|
3
|
Mao Y, Zhou C, Wang C, Xin Z. Continuous-flow synthesis and crystal modification of Pigment Red 53. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
A Narrative Review on the Bioactivity and Health Benefits of Alpha-Phellandrene. Sci Pharm 2022. [DOI: 10.3390/scipharm90040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aromatic essential oils play a significant role in pharmaceuticals, food additives, cosmetics, and perfumery. Essential oils mostly comprise aliphatic hydrocarbons, monoterpenoids, sesquiterpenoids and diterpenes. Plant extracts comprise a complex mixture of terpenes, terpenoids, aliphatic and phenol-derived aromatic components. Terpenes are a significant class of hydrocarbons with numerous health benefits. These biological functions of essential oil components are examined in vitro and in vivo studies. Some studies evaluated the properties and functions of α-phellandrene (α-PHE). Detailed evaluation to determine the functions of α-PHE over a spectrum of health care domains needs to be initiated. Its possible mechanism of action in a biological system could reveal the future opportunities and challenges in using α-PHE as a pharmaceutical candidate. The biological functions of α-PHE are reported, including anti-microbial, insecticidal, anti-inflammatory, anti-cancer, wound healing, analgesic, and neuronal responses. The present narrative review summarizes the synthesis, biotransformation, atmospheric emission, properties, and biological activities of α-PHE. The literature review suggests that extended pre-clinical studies are necessary to develop α-PHE-based adjuvant therapeutic approaches.
Collapse
|
5
|
Kleoff M, Kiler P, Heretsch P. Synthesis of odorants in flow and their applications in perfumery. Beilstein J Org Chem 2022; 18:754-768. [PMID: 35859624 PMCID: PMC9263551 DOI: 10.3762/bjoc.18.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Continuous flow technology is a key technology for sustainable manufacturing with numerous applications for the synthesis of fine chemicals. In recent years, the preparation of odorants utilizing the advantages of flow reactors received growing attention. In this review, we give an overview of selected methods for the synthesis of odorants in flow, including heterogeneously catalyzed reactions, gas reactions, and photochemical C–H functionalization processes. After a brief introduction on types of odorants, the presented odorant syntheses are ordered according to the main odor families “fruity”, “green”, “marine”, “floral”, “spicy”, “woody”, “ambery”, and “musky” and their use and importance for perfumery is briefly discussed.
Collapse
Affiliation(s)
- Merlin Kleoff
- Freie Universität Berlin, Institut für Chemie und Biochemie, Fabeckstr. 34-36, 14195 Berlin, Germany
| | - Paul Kiler
- PK Perfumes, Menifee, California, United States of America
| | - Philipp Heretsch
- Leibniz Universität Hannover, Institut für Organische Chemie, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
6
|
Yasukawa T, Sakamoto K, Yamashita Y, Kobayashi S. Homologation of Aryl Aldehydes Using Nitromethane as a C1 Source Enabled by Nitrogen-Doped Carbon-Supported Palladium Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Karin Sakamoto
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu̅ Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Sagandira CR, Nqeketo S, Mhlana K, Sonti T, Gaqa S, Watts P. Towards 4th industrial revolution efficient and sustainable continuous flow manufacturing of active pharmaceutical ingredients. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00483b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The convergence of end-to-end continuous flow synthesis with downstream processing, process analytical technology (PAT), artificial intelligence (AI), machine learning and automation in ensuring improved accessibility of quality medicines on demand.
Collapse
Affiliation(s)
| | - Sinazo Nqeketo
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Kanyisile Mhlana
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Thembela Sonti
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Sibongiseni Gaqa
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| | - Paul Watts
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa
| |
Collapse
|