1
|
Bernhard LM, Zelenska K, Takashima M, Arisawa M, Murai K, Gröger H. Enantioselective Synthesis of Secondary Amines by Combining Oxidative Rearrangement and Biocatalysis in a One-Pot Process. J Org Chem 2024; 89:8513-8520. [PMID: 38836638 DOI: 10.1021/acs.joc.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This contribution describes the development of chemoenzymatic one-pot processes, which combine an oxidative rearrangement and a biotransformation catalyzed by an imine reductase (IRED), for the synthesis of highly enantiomerically enriched secondary amines, such as an aryl-substituted pyrrolidine and a benzazepine. The benefits of this chemoenzymatic one-pot approach include high overall conversions (up to >99%), high enantiomeric excesses (up to >99% ee), and a straightforward synthetic approach toward secondary amines without the need to isolate the formed intermediate. For the initial chemical reaction, namely, the oxidative rearrangement, PhI(OAc)2 in methanol is used as a non-natural reagent, whereas the enzymatic step requires only stoichiometric amounts of d-glucose along with catalytic amounts of IRED, glucose dehydrogenase (GDH), and the cofactor NADPH. This methodology, demonstrating the compatibility of a "classic" organic synthesis using a non-natural, highly reactive reagent and a subsequent biocatalytic step, can be applied for different amines as substrates, thus making this concept a versatile tool in synthetic organic chemistry in general and for enantioselective synthesis of heterocyclic secondary amines in particular.
Collapse
Affiliation(s)
- Laura M Bernhard
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Kateryna Zelenska
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | - Mirei Takashima
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuhiro Arisawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Murai
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| |
Collapse
|
2
|
Arnodo D, De Nardi F, Parisotto S, De Nardo E, Cananà S, Salvatico F, De Marchi E, Scarpi D, Blangetti M, Occhiato EG, Prandi C. Asymmetric Reduction of Cyclic Imines by Imine Reductase Enzymes in Non-Conventional Solvents. CHEMSUSCHEM 2024; 17:e202301243. [PMID: 37751248 DOI: 10.1002/cssc.202301243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
The first enantioselective reduction of 2-substituted cyclic imines to the corresponding amines (pyrrolidines, piperidines, and azepines) by imine reductases (IREDs) in non-conventional solvents is reported. The best results were obtained in a glycerol/phosphate buffer 1 : 1 mixture, in which heterocyclic amines were produced with full conversions (>99 %), moderate to good yields (22-84 %) and excellent S-enantioselectivities (up to >99 % ee). Remarkably, the process can be performed at a 100 mM substrate loading, which, for the model compound, means a concentration of 14.5 g L-1 . A fed-batch protocol was also developed for a convenient scale-up transformation, and one millimole of substrate 1 a was readily converted into 120 mg of enantiopure amine (S)-2 a with a remarkable 80 % overall yield. This aspect strongly contributes to making the process potentially attractive for large-scale applications in terms of economic and environmental sustainability for a good number of substrates used to produce enantiopure cyclic amines of high pharmaceutical interest.
Collapse
Affiliation(s)
- Davide Arnodo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Federica De Nardi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefano Parisotto
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Eugenio De Nardo
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Stefania Cananà
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
- Scuola Universitaria Superiore I.U.S.S. Pavia, Piazza Vittoria 15, 2700, Pavia, Italy
| | - Federica Salvatico
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Elisa De Marchi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Dina Scarpi
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Ernesto G Occhiato
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
3
|
Heckmann CM, Paul CE. Enantio-Complementary Synthesis of 2-Substituted Pyrrolidines and Piperidines via Transaminase-Triggered Cyclizations. JACS AU 2023; 3:1642-1649. [PMID: 37388678 PMCID: PMC10301811 DOI: 10.1021/jacsau.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 07/01/2023]
Abstract
Chiral N-heterocycles are a common motif in many active pharmaceutical ingredients; however, their synthesis often relies on the use of heavy metals. In recent years, several biocatalytic approaches have emerged to reach enantiopurity. Here, we describe the asymmetric synthesis of 2-substituted pyrrolidines and piperidines, starting from commercially available ω-chloroketones by using transaminases, which has not yet been comprehensively studied. Analytical yields of up to 90% and enantiomeric excesses of up to >99.5% for each enantiomer were achieved, which has not previously been shown for bulky substituents. This biocatalytic approach was applied to synthesize (R)-2-(p-chlorophenyl)pyrrolidine on a 300 mg scale, affording 84% isolated yield, with >99.5% ee.
Collapse
|
4
|
Chen Q, Li BB, Zhang L, Chen XR, Zhu XX, Chen FF, Shi M, Chen CC, Yang Y, Guo RT, Liu W, Xu JH, Zheng GW. Engineered Imine Reductase for Larotrectinib Intermediate Manufacture. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Bo-Bo Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People’s Republic of China
| | - Xin-Ru Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xin-Xin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Min Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People’s Republic of China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People’s Republic of China
| | - Yu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People’s Republic of China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, People’s Republic of China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|