1
|
Rowley BM, Thompson LA, Power LA, Daglish J, Parks E, Birbeck J, Marsden S, Kapur N, Blacker AJ. Integrating continuous flow reaction and work-up: chiral amine resolution, separation and purification using a novel coalescing filter system. REACT CHEM ENG 2025; 10:392-397. [PMID: 39618551 PMCID: PMC11603407 DOI: 10.1039/d4re00442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/12/2024] [Indexed: 01/30/2025]
Abstract
To maximize the benefits of a continuous flow reaction, a continuous work-up is also needed. Herein, we present a process design and novel equipment for a continuous amine resolution reaction, integrated with liquid-liquid (L-L) extraction, back-extraction into a different solvent, and crystallisation purification for product isolation. The reaction, in iso-propyl acetate, flows through a heated fixed-bed reactor with solid supported Candida antarctica lipase which catalyses the resolution of (rac)-1-phenylethylamine to give the (R)-amide in 50% conversion and 96% enantiomeric excess (ee). This is separated from the unreacted (S)-amine co-product by mixing with an acidic aqueous stream and separating the phases using our recently reported coalescence filter separator. The aqueous stream is neutralised by mixing with base and back-extracted into methyl-THF solvent before separating the phases using a membrane separator. Finally, a solid amine salt is isolated by filtration, achieved by mixing the free base with an organic acid to cause crystallisation to give the (S)-1-phenylethylamine in 43% yield and >99% ee from racemate. The work illustrates how typical reactions, work-up and purification steps that involve multiple phases can be telescoped together using both new and commercially available laboratory equipment. This continuous system uses mild reaction conditions, green solvents and minimises their use for reduced waste.
Collapse
Affiliation(s)
- Bethan M Rowley
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| | - Lisa A Thompson
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| | - Luke A Power
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| | - James Daglish
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| | - Emma Parks
- Croda Europe Ltd. Goole East Yorkshire UK
| | | | - Steve Marsden
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| | - Nikil Kapur
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| | - A John Blacker
- Institute of Process Research and Development, Schools of Chemistry, Chemical and Process Engineering, Mechanical Engineering, University of Leeds Woodhouse Lane Leeds West Yorkshire UK
| |
Collapse
|
2
|
Ouyang J, Yang W, Guo Z, Li F, Liu W, Guo P, Zhou Y, Gao D, Zhang L, Tao S. Modular Cascade of Flow Reactors: Continuous Flow Synthesis of Water-Insoluble Diazo Dyes in Aqueous System. CHEMSUSCHEM 2024; 17:e202400413. [PMID: 38702956 DOI: 10.1002/cssc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Continuous flow synthesis is pivotal in dye production to address batch-to-batch variations. However, synthesizing water-insoluble dyes in an aqueous system poses a challenge that can lead to clogging. This study successfully achieved the safe and efficient synthesis of azo dyes by selecting and optimizing flow reactor modules for different reaction types in the two-step reaction and implementing cascade cooperation. Integrating continuous flow microreactor with continuous stirred tank reactor (CSTR) enabled the continuous flow synthesis of Sudan Yellow 3G without introducing water-soluble functional groups or using organic solvents to enhance solubility. Optimizing conditions (acidity/alkalinity, temperature, residence time) within the initial modular continuous flow reactor resulted in a remarkable 99.5% isolated yield, 98.6 % purity, and a production rate of 2.90 g h-1. Scaling-up based on different reactor module characteristics further increased the production rate to 74.4 g h-1 while maintaining high yield and purity. The construction of this small 3D-printing modular cascaded reactor and process scaling-up provide technical support for continuous flow synthesis of water-insoluble dyes, particularly high-market-share azo dyes. Moreover, this versatile methodology proves applicable to continuous flow processes involving various homogeneous and heterogeneous reaction cascades.
Collapse
Affiliation(s)
- Jihong Ouyang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenbo Yang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Zhaoyan Guo
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Fujun Li
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wendong Liu
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Pengfei Guo
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yumeng Zhou
- Instrumental Analysis Center, Dalian University of Technology, Dalian, 116024, China
| | - Dali Gao
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Lijing Zhang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Tao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Turner TD, O’Shaughnessy C, He X, Levenstein MA, Hunter L, Wojciechowski J, Bristowe H, Stone R, Wilson CC, Florence A, Robertson K, Kapur N, Meldrum FC. Flow-Xl: a new facility for the analysis of crystallization in flow systems. J Appl Crystallogr 2024; 57:1299-1310. [PMID: 39387089 PMCID: PMC11460381 DOI: 10.1107/s1600576724006113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/23/2024] [Indexed: 10/12/2024] Open
Abstract
Characterization of crystallization processes in situ is of great importance to furthering knowledge of how nucleation and growth processes direct the assembly of organic and inorganic materials in solution and, critically, understanding the influence that these processes have on the final physico-chemical properties of the resulting solid form. With careful specification and design, as demonstrated here, it is now possible to bring combined X-ray diffraction and Raman spectroscopy, coupled to a range of fully integrated segmented and continuous flow platforms, to the laboratory environment for in situ data acquisition for timescales of the order of seconds. The facility used here (Flow-Xl) houses a diffractometer with a micro-focus Cu Kα rotating anode X-ray source and a 2D hybrid photon-counting detector, together with a Raman spectrometer with 532 and 785 nm lasers. An overview of the diffractometer and spectrometer setup is given, and current sample environments for flow crystallization are described. Commissioning experiments highlight the sensitivity of the two instruments for time-resolved in situ data collection of samples in flow. Finally, an example case study to monitor the batch crystallization of sodium sulfate from aqueous solution, by tracking both the solute and solution phase species as a function of time, highlights the applicability of such measurements in determining the kinetics associated with crystallization processes. This work illustrates that the Flow-Xl facility provides high-resolution time-resolved in situ structural phase information through diffraction data together with molecular-scale solution data through spectroscopy, which allows crystallization mechanisms and their associated kinetics to be analysed in a laboratory setting.
Collapse
Affiliation(s)
- T. D. Turner
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - C. O’Shaughnessy
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - X. He
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - M. A. Levenstein
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS91191Gif-sur-YvetteFrance
| | - L. Hunter
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - J. Wojciechowski
- Rigaku Europe SE, Hugenottenallee 167, 63263Neu-Isenburg, Germany
| | - H. Bristowe
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - R. Stone
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - C. C. Wilson
- Department of ChemistryUniversity of BathBathUnited Kingdom
| | - A. Florence
- Centre for Continuous CrystallisationUniversity of StrathclydeGlasgowUnited Kingdom
| | - K. Robertson
- Faculty of Engineering, University ParkUniversity of NottinghamNottinghamNG7 2RDUnited Kingdom
| | - N. Kapur
- School of Mechanical EngineeringUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - F. C. Meldrum
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| |
Collapse
|
4
|
Alfano AI, Smyth M, Wharry S, Moody TS, Nuño M, Butters C, Baumann M. Multiphase photochemistry in flow mode via an integrated continuous stirred tank reactor (CSTR) approach. Chem Commun (Camb) 2024; 60:7037-7040. [PMID: 38895750 DOI: 10.1039/d4cc02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A new photochemical CSTR system capable of handling solids in scaled continuous processes is presented. High-power UV-LEDs are integrated in these CSTRs containing an insoluble base that aids in generating pyrazolines via cycloaddition between alkenes and in situ generated diazo species. Contrary to reported batch methods product degradation via ring contraction is suppressed whilst generating gram quantities of spirocyclic pyrazolines.
Collapse
Affiliation(s)
| | - Megan Smyth
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
| | - Scott Wharry
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
| | - Thomas S Moody
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
- Arran Chemical Company, Monksland Industrial Estate, Roscommon N37 DN24, Ireland
| | - Manuel Nuño
- Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK
| | - Chris Butters
- Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Dublin 4, Ireland.
| |
Collapse
|
5
|
Gnädinger U, Poier D, Trombini C, Dabros M, Marti R. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen. Org Process Res Dev 2024; 28:1860-1868. [PMID: 38783850 PMCID: PMC11110044 DOI: 10.1021/acs.oprd.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
The use of sustainable oxidants is of great interest to the chemical industry, considering the importance of oxidation reactions for the manufacturing of chemicals and society's growing awareness of its environmental impact. Molecular oxygen (O2), with an almost optimal atom efficiency in oxidation reactions, presents one of the most attractive alternatives to common reagents that are not only toxic in most cases but produce stoichiometric amounts of waste that must be treated. However, fire and explosion safety concerns, especially when used in combination with organic solvents, restrict its easy use. Here, we use state-of-the-art 3D printing and experimental feedback to develop a miniature continuous stirred-tank reactor (mini-CSTR) that enables efficient use of O2 as an oxidant in organic chemistry. Outstanding heat dissipation properties, achieved through integrated jacket cooling and a high surface-to-volume ratio, allow for a safe operation of the exothermic oxidation of 2-ethylhexanal, surpassing previously reported product selectivity. Moving well beyond the proof-of-concept stage, we characterize and illustrate the reactor's potential in the gas-liquid-solid triphasic synthesis of an endoperoxide precursor of antileishmanial agents. The custom-designed magnetic overhead stirring unit provides improved stirring efficiency, facilitating the handling of suspensions and, in combination with the borosilicate gas dispersion plate, leading to an optimized gas-liquid interface. These results underscore the immense potential that lies within the use of mini-CSTR in sustainable chemistry.
Collapse
Affiliation(s)
- Ursina Gnädinger
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Dario Poier
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Claudio Trombini
- Department
of Chemistry “G. Ciamician”, Alma Mater Studiorum, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Michal Dabros
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| | - Roger Marti
- Institute
of Chemical Technology, Haute École d’Ingénierie
et d’Architecture Fribourg, HES-SO
University of Applied Sciences and Arts Western Switzerland, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Daglish J, Blacker AJ, de Boer G, Russell SJ, Tausif M, Hose DJ, Parsons AR, Crampton A, Kapur N. A Coalescing Filter for Liquid-Liquid Separation and Multistage Extraction in Continuous-Flow Chemistry. Org Process Res Dev 2024; 28:1979-1989. [PMID: 38783854 PMCID: PMC11110050 DOI: 10.1021/acs.oprd.4c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Presented here is the design and performance of a coalescing liquid-liquid filter, based on low-cost and readily available meltblown nonwoven substrates for separation of immiscible phases. The performance of the coalescer was determined across three broad classes of fluid mixtures: (i) immiscible organic/aqueous systems, (ii) a surfactant laden organic/aqueous system with modification of the type of emulsion and interfacial surface tension through the addition of sodium chloride, and (iii) a water-acetone/toluene system. The first two classes demonstrated good performance of the equipment in effecting separation, including the separation of a complex emulsion system for which a membrane separator, operating through transport of a preferentially wetting fluid through the membrane, failed entirely. The third system was used to demonstrate the performance of the separator within a multistage liquid-liquid counterflow extraction system. The performance, robust nature, and scalability of coalescing filters should mean that this approach is routinely considered for liquid-liquid separations and extractions within the fine chemical and pharmaceutical industry.
Collapse
Affiliation(s)
- James Daglish
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, United Kingdom
| | - A. John Blacker
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gregory de Boer
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Muhammad Tausif
- School
of Design, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David
R. J. Hose
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Anna R. Parsons
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Alex Crampton
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Nikil Kapur
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
7
|
Maltby K, Sharma K, Short MAS, Farooque S, Hamill R, Blacker AJ, Kapur N, Willans CE, Nguyen BN. Rationalizing and Adapting Water-Accelerated Reactions for Sustainable Flow Organic Processes. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8675-8684. [PMID: 37323809 PMCID: PMC10265699 DOI: 10.1021/acssuschemeng.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Water-accelerated reactions, wherein at least one organic reactant is not soluble in water, are an important class of organic reactions, with a potentially pivotal impact on sustainability of chemical manufacturing processes. However, mechanistic understanding of the factors controlling the acceleration effect has been limited, due to the complex and varied physical and chemical nature of these processes. In this study, a theoretical framework has been established to calculate the rate acceleration of known water-accelerated reactions, giving computational estimations of the change to ΔG‡ which correlate with experimental data. In-depth study of a Henry reaction between N-methylisatin and nitromethane using our framework led to rationalization of the reaction kinetics, its lack of dependence on mixing, kinetic isotope effect, and different salt effects with NaCl and Na2SO4. Based on these findings, a multiphase flow process which includes continuous phase separation and recycling of the aqueous phase was developed, and its superior green metrics (PMI-reaction = 4 and STY = 0.64 kg L-1 h-1) were demonstrated. These findings form the essential basis for further in silico discovery and development of water-accelerated reactions for sustainable manufacturing.
Collapse
Affiliation(s)
- Katarzyna
A. Maltby
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Krishna Sharma
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Marc A. S. Short
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sannia Farooque
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Rosalie Hamill
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - A. John Blacker
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nikil Kapur
- School
of Mechanical Engineering, University of
Leeds, Leeds LS2 9JT, U.K.
| | - Charlotte E. Willans
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Bao N. Nguyen
- Institute
of Process Research & Development, School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
8
|
Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. A retrospective-prospective review of Suzuki–Miyaura reaction: From cross-coupling reaction to pharmaceutical industry applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Li W, Jiang M, Liu M, Ling X, Xia Y, Wan L, Chen F. Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry 2022; 28:e202200700. [PMID: 35357730 DOI: 10.1002/chem.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Xu Ling
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| |
Collapse
|
10
|
Jellicoe M, Igder A, Chuah C, Jones DB, Luo X, Stubbs KA, Crawley EM, Pye SJ, Joseph N, Vimalananthan K, Gardner Z, Harvey DP, Chen X, Salvemini F, He S, Zhang W, Chalker JM, Quinton JS, Tang Y, Raston CL. Vortex fluidic induced mass transfer across immiscible phases. Chem Sci 2022; 13:3375-3385. [PMID: 35432865 PMCID: PMC8943860 DOI: 10.1039/d1sc05829k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
Mixing immiscible liquids typically requires the use of auxiliary substances including phase transfer catalysts, microgels, surfactants, complex polymers and nano-particles and/or micromixers. Centrifugally separated immiscible liquids of different densities in a 45° tilted rotating tube offer scope for avoiding their use. Micron to submicron size topological flow regimes in the thin films induce high inter-phase mass transfer depending on the nature of the two liquids. A hemispherical base tube creates a Coriolis force as a 'spinning top' (ST) topological fluid flow in the less dense liquid which penetrates the denser layer of liquid, delivering liquid from the upper layer through the lower layer to the surface of the tube with the thickness of the layers determined using neutron imaging. Similarly, double helical (DH) topological flow in the less dense liquid, arising from Faraday wave eddy currents twisted by Coriolis forces, impact through the less dense liquid onto the surface of the tube. The lateral dimensions of these topological flows have been determined using 'molecular drilling' impacting on a thin layer of polysulfone on the surface of the tube and self-assembly of nanoparticles at the interface of the two liquids. At high rotation speeds, DH flow also occurs in the denser layer, with a critical rotational speed reached resulting in rapid phase demixing of preformed emulsions of two immiscible liquids. ST flow is perturbed relative to double helical flow by changing the shape of the base of the tube while maintaining high mass transfer between phases as demonstrated by circumventing the need for phase transfer catalysts. The findings presented here have implications for overcoming mass transfer limitations at interfaces of liquids, and provide new methods for extractions and separation science, and avoiding the formation of emulsions.
Collapse
Affiliation(s)
- Matt Jellicoe
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Aghil Igder
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Clarence Chuah
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Darryl B Jones
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xuan Luo
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
| | - Emily M Crawley
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Scott J Pye
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Nikita Joseph
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Kasturi Vimalananthan
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Zoe Gardner
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - David P Harvey
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Xianjue Chen
- School of Environmental and Life Sciences, The University of Newcastle Callaghan New South Wales 2308 Australia
| | - Filomena Salvemini
- Australian Nuclear Science and Technology Organization New Illawara Road, Lucas Heights NSW Australia
| | - Shan He
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Department of Food Science and Engineering, School of Chemistry Chemical Engineering, Guangzhou University Guangzhou 510006 China
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University Adelaide SA 5042 Australia
| | - Justin M Chalker
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Jamie S Quinton
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
- Flinders Microscopy and Microanalysis (FMMA), College of Science and Engineering, Flinders University GPO Box 2100 Adelaide South Australia 5001 Australia
| | - Youhong Tang
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| | - Colin L Raston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University Bedford Park SA 5042 Australia
| |
Collapse
|
11
|
Taylor CJ, Manson JA, Clemens G, Taylor BA, Chamberlain TW, Bourne RA. Modern advancements in continuous-flow aided kinetic analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although kinetic analysis has traditionally been conducted in a batch vessel, continuous-flow aided kinetic analysis continues to swell in popularity.
Collapse
Affiliation(s)
- Connor J. Taylor
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Jamie A. Manson
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Graeme Clemens
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Brian A. Taylor
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Thomas W. Chamberlain
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard A. Bourne
- Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Nandiwale KY, Hart T, Zahrt AF, Nambiar AMK, Mahesh PT, Mo Y, Nieves-Remacha MJ, Johnson MD, García-Losada P, Mateos C, Rincón JA, Jensen KF. Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00054g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research-scale fully automated flow platform for reaction self-optimization with solids handling facilitates identification of optimal conditions for continuous manufacturing of pharmaceuticals while reducing amounts of raw materials consumed.
Collapse
Affiliation(s)
- Kakasaheb Y. Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Travis Hart
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Andrew F. Zahrt
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Prajwal T. Mahesh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | - Martin D. Johnson
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Pablo García-Losada
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Francis D, Blacker AJ, Kapur N, Marsden SP. Readily Reconfigurable Continuous-Stirred Tank Photochemical Reactor Platform. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Francis
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - A. John Blacker
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P. Marsden
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
14
|
Duvadie R, Pomberger A, Mo Y, Altinoglu EI, Hsieh HW, Nandiwale KY, Schultz VL, Jensen KF, Robinson RI. Photoredox Iridium–Nickel Dual Catalyzed Cross-Electrophile Coupling: From a Batch to a Continuous Stirred-Tank Reactor via an Automated Segmented Flow Reactor. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rohit Duvadie
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander Pomberger
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Erhan I. Altinoglu
- Chemical and Pharmaceutical Profiling, Novartis Global Drug Development, 700 Main Street South, Cambridge, Massachusetts 02139, United States
| | - Hsiao-Wu Hsieh
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kakasaheb Y. Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Victor L. Schultz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Richard I. Robinson
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Tseke K, Lennon C, O'Mahony J, Kinsella M. A Continuous‐Flow Route to Enantioenriched 3‐Substituted‐3‐Hydroxyoxindoles: Organocatalytic Aldol Reactions of Isatin with Acetone. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kavnen Tseke
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| | - Claire Lennon
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| | - Joseph O'Mahony
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| | - Michael Kinsella
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC) Waterford Institute of Technology Cork Road Waterford X91 K0EK Republic of Ireland
| |
Collapse
|
16
|
Morvan J, McBride T, Curbet I, Colombel-Rouen S, Roisnel T, Crévisy C, Browne DL, Mauduit M. Continuous Flow Z-Stereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules*. Angew Chem Int Ed Engl 2021; 60:19685-19690. [PMID: 34184375 DOI: 10.1002/anie.202106410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Indexed: 11/08/2022]
Abstract
The first continuous flow Z-selective olefin metathesis process is reported. Key to realizing this process was the adequate choice of stereoselective catalysts combined with the design of an appropriate continuous reactor setup. The designed continuous process permits various self-, cross- and macro-ring-closing-metathesis reactions, delivering products in high selectivity and short residence times. This technique is exemplified by direct application to the preparation of a range of pheromones and macrocyclic odorant molecules and culminates in a telescoped Z-selective cross-metathesis/ Dieckmann cyclisation sequence to access (Z)-Civetone, incorporating a serial array of continually stirred tank reactors.
Collapse
Affiliation(s)
- Jennifer Morvan
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, 35000, Rennes, France
| | - Tom McBride
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Idriss Curbet
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, 35000, Rennes, France
| | - Sophie Colombel-Rouen
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, 35000, Rennes, France
| | - Thierry Roisnel
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, 35000, Rennes, France
| | - Christophe Crévisy
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, 35000, Rennes, France
| | - Duncan L Browne
- UCL School of Pharmacy (Room 210), 29-39 Brunswick Square, London, WC1 1AX, UK
| | - Marc Mauduit
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, 35000, Rennes, France
| |
Collapse
|
17
|
Morvan J, McBride T, Curbet I, Colombel‐Rouen S, Roisnel T, Crévisy C, Browne DL, Mauduit M. Continuous Flow
Z
‐Stereoselective Olefin Metathesis: Development and Applications in the Synthesis of Pheromones and Macrocyclic Odorant Molecules**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jennifer Morvan
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 35000 Rennes France
| | - Tom McBride
- Cardiff Catalysis Institute School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Idriss Curbet
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 35000 Rennes France
| | - Sophie Colombel‐Rouen
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 35000 Rennes France
| | - Thierry Roisnel
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 35000 Rennes France
| | - Christophe Crévisy
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 35000 Rennes France
| | - Duncan L. Browne
- UCL School of Pharmacy (Room 210) 29–39 Brunswick Square London WC1 1AX UK
| | - Marc Mauduit
- Univ Rennes Ecole Nationale Supérieure de Chimie de Rennes CNRS, ISCR UMR 6226 35000 Rennes France
| |
Collapse
|
18
|
Breen CP, Nambiar AM, Jamison TF, Jensen KF. Ready, Set, Flow! Automated Continuous Synthesis and Optimization. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
High-pressure asymmetric hydrogenation in a customized flow reactor and its application in multi-step flow synthesis of chiral drugs. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Power LA, Clayton AD, Reynolds WR, Hose DRJ, Ainsworth C, Chamberlain TW, Nguyen BN, Bourne RA, Kapur N, Blacker AJ. Selective separation of amines from continuous processes using automated pH controlled extraction. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00205h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An automated separation system is described for identifying the optimal conditions for purifying an amine from a mixture.
Collapse
Affiliation(s)
- Luke A. Power
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Adam D. Clayton
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - William R. Reynolds
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - David R. J. Hose
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Caroline Ainsworth
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Thomas W. Chamberlain
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Bao N. Nguyen
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard A. Bourne
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Nikil Kapur
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - A. John Blacker
- Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
21
|
Lignos I, Mo Y, Carayannopoulos L, Ginterseder M, Bawendi MG, Jensen KF. A high-temperature continuous stirred-tank reactor cascade for the multistep synthesis of InP/ZnS quantum dots. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00454e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multistep and continuous production of core–shell InP/ZnS semiconductor nanocrystals in a high-temperature and miniature continuous stirred-tank reactor cascade.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | - Yiming Mo
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | | | | | - Moungi G. Bawendi
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| | - Klavs F. Jensen
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- U.S.A
| |
Collapse
|
22
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
23
|
Penny MR, Tsui N, Hilton ST. Extending practical flow chemistry into the undergraduate curriculum via the use of a portable low-cost 3D printed continuous flow system. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00122-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractContinuous flow chemistry is undergoing rapid growth and adoption within the pharmaceutical industry due to its ability to rapidly translate chemical discoveries from medicinal chemistry laboratories into process laboratories. Its growing significance means that it is imperative that flow chemistry is taught and experienced by both undergraduate and postgraduate synthetic chemists. However, whilst flow chemistry has been incorporated by industry, there remains a distinct lack of practical training and knowledge at both undergraduate and postgraduate levels. A key challenge associated with its implementation is the high cost (>$25,000) of the system’s themselves, which is far beyond the financial reach of most universities and research groups, meaning that this key technology remains open to only a few groups and that its associated training remains a theoretical rather than a practical subject. In order to increase access to flow chemistry, we sought to design and develop a small-footprint, low-cost and portable continuous flow system that could be used to teach flow chemistry, but that could also be used by research groups looking to transition to continuous flow chemistry. A key element of its utility focusses on its 3D printed nature, as low-cost reactors could be readily incorporated and modified to suit differing needs and educational requirements. In this paper, we demonstrate the system’s flexibility using reactors and mixing chips designed and 3D printed by an undergraduate project student (N.T.) and show how the flexibility of the system allows the investigation of differing flow paths on the same continuous flow system in parallel.
Collapse
|
24
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
A practical experiment to teach students continuous flow and physico-chemical methods: acetylation of ethylene diamine in liquid bi-phase. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractDespite growing applications being reported both in academia and industry, continuous flow chemistry remains a relatively untaught field across most chemistry undergraduate courses. This is particularly true in laboratory practical classes, where it is often deemed simpler to carry out synthetic reactions in traditional batch mode using round-bottomed flasks. Herein, we report the development of an undergraduate project that utilises cheap and readily available materials to construct continuous flow reactors. The students compare the performance of different types of reactors and conditions in a biphasic selective acetylation of a symmetrical diamine. Throughout the investigation, the students can vary multiple parameters as they optimise the reaction, thus actively learning and readjusting them based on their improved understanding. The experiments give the students an appreciation of continuous flow techniques in comparison to batch.
Collapse
|
26
|
Levenstein MA, Kim YY, Hunter L, Anduix-Canto C, González Niño C, Day SJ, Li S, Marchant WJ, Lee PA, Tang CC, Burghammer M, Meldrum FC, Kapur N. Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes. LAB ON A CHIP 2020; 20:2954-2964. [PMID: 32666988 DOI: 10.1039/d0lc00239a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures. Under continuous flow, scale formation on the reactor walls begins almost immediately on mixing of the crystallizing species, which over time results in occlusion of the channel. Depletion of ions at the start of the channel results in reduced crystallization towards the end of the channel. Conversely, segmented flow can control crystallization, so it occurs entirely within the droplet. Consequently, the spatial location within the channel represents a temporal point in the crystallization process. Whilst each method can provide useful crystallographic information, time-resolved information is lost when reactor fouling occurs and changes the solution conditions with time. The flow within a single device can be manipulated to give a broad range of information addressing surface interaction or solution crystallization.
Collapse
Affiliation(s)
- Mark A Levenstein
- School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
AbstractOscillatory flow reactors (OFRs) superimpose an oscillatory flow to the net movement through a flow reactor. OFRs have been engineered to enable improved mixing, excellent heat- and mass transfer and good plug flow character under a broad range of operating conditions. Such features render these reactors appealing, since they are suitable for reactions that require long residence times, improved mass transfer (such as in biphasic liquid-liquid systems) or to homogeneously suspend solid particles. Various OFR configurations, offering specific features, have been developed over the past two decades, with significant progress still being made. This review outlines the principles and recent advances in OFR technology and overviews the synthetic applications of OFRs for liquid-liquid and solid-liquid biphasic systems.
Collapse
|
28
|
Lindeque RM, Woodley JM. The Effect of Dissolved Oxygen on Kinetics during Continuous Biocatalytic Oxidations. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rowan M. Lindeque
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
29
|
Self-optimising reactive extractions: towards the efficient development of multi-step continuous flow processes. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00086-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractDownstream purification of products and intermediates is essential for the development of continuous flow processes. Described herein, is a study on the use of a modular and reconfigurable continuous flow platform for the self-optimisation of reactive extractions and multi-step reaction-extraction processes. The selective extraction of one amine from a mixture of two similar amines was achieved with an optimum separation of 90%, and in this case, the black-box optimisation approach was superior to global polynomial modelling. Furthermore, this methodology was utilised to simultaneously optimise the continuous flow synthesis and work-up of N-benzyl-α-methylbenzylamine with respect to four variables, resulting in a significantly improved purity.
Collapse
|
30
|
Ayothiraman R, Gangu AS, Bandaru D, Guturi SK, Lakshminarasimhan T, Jaleel M, Kanagavel K, Rangaswamy S, Cuniere NL, Zaretsky S, Camacho K, Eastgate MD, Vaidyanathan R. Two Approaches to a Trifluoromethyl Triazole: A Fit-for-Purpose Trifluoromethylation in Flow-Mode and a Long-Term Decarboxylative Click Approach. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rajaram Ayothiraman
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Aravind S. Gangu
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Durgarao Bandaru
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Siva Krishna Guturi
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Thirumalai Lakshminarasimhan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Mohamed Jaleel
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Kishorekumar Kanagavel
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Sundaramurthy Rangaswamy
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| | - Nicolas L. Cuniere
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Serge Zaretsky
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Kathryn Camacho
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical and Synthetic Development, Bristol-Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Rajappa Vaidyanathan
- Chemical Development and API Supply, Biocon Bristol-Myers Squibb Research and Development Center, Biocon Park, Jigani Link Road, Bommasandra IV, Bengaluru 560099, India
| |
Collapse
|
31
|
Lignos I, Ow H, Lopez JP, McCollum D, Zhang H, Imbrogno J, Shen Y, Chang S, Wang W, Jensen KF. Continuous Multistage Synthesis and Functionalization of Sub-100 nm Silica Nanoparticles in 3D-Printed Continuous Stirred-Tank Reactor Cascades. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6699-6706. [PMID: 31922389 DOI: 10.1021/acsami.9b20605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The controlled and continuous production of nanoparticles (NPs) with functionalized surfaces remains a technological challenge. We present a multistage synthetic platform, consisting of 3D-printed miniature continuous stirred-tank reactor (CSTR) cascades, for the continuous synthesis and functionalization of SiO2 NPs. The use of the CSTR platform provides ideal and rapid mixing of precursor solutions, precise injection of additional reagents for multistep reactions, and facile operation when using viscous solutions and handling of syntheses with longer reaction times. To exemplify the use of such custom-designed CSTR cascades, amine- and carbohydrate-functionalized SiO2 NPs are chosen as model reaction systems. In particular, the intensified flow reactor units allowed for the reproducible formation of SiO2 NPs with diameters less than 100 nm and narrow size distributions (3-8%). Most importantly, by assembling various 3D-printed CSTR cascades, we synthesized gluconolactone-capped polyethylenimine-modified silica NPs in a fully continuous manner. The inherent control over NP surface charge, reactor scalability, and the significant shortening of processing times (less than 10 min) compared to batch methodologies (several days) strongly indicate the ability of the reactor technology to accelerate continuous nanomanufacturing. In general, it provides a simple route for the reproducible preparation of functionalized NPs, thus expanding the gamut of flow reactors for material synthesis.
Collapse
Affiliation(s)
- Ioannis Lignos
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Hooisweng Ow
- Aramco Research Center-Boston , 400 Technology Square , Cambridge , Massachusetts 02139 , United States
| | - Jeniffer Perea Lopez
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - D'Ante McCollum
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Haomiao Zhang
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Joseph Imbrogno
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yi Shen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Sehoon Chang
- Aramco Research Center-Boston , 400 Technology Square , Cambridge , Massachusetts 02139 , United States
| | - Wei Wang
- Aramco Research Center-Boston , 400 Technology Square , Cambridge , Massachusetts 02139 , United States
| | - Klavs F Jensen
- Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
32
|
Fülöp Z, Szemesi P, Bana P, Éles J, Greiner I. Evolution of flow-oriented design strategies in the continuous preparation of pharmaceuticals. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00273a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the flow-oriented design (FOD) in the multi-step continuous-flow synthesis of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Zsolt Fülöp
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | - Péter Szemesi
- Department of Organic Chemistry and Technology
- Budapest University of Technology and Economics
- 1521 Budapest
- Hungary
| | | | | | | |
Collapse
|
33
|
Guan F, Kapur N, Sim L, Taylor CJ, Wen J, Zhang X, Blacker AJ. A universal reactor platform for batch and flow: application to homogeneous and heterogeneous hydrogenation. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00061b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Micro-CSTRs have been developed and used to determine optimal pressure hydrogenation conditions in batch, before being reconfigured for continuous flow.
Collapse
Affiliation(s)
- Fanfu Guan
- Institute of Process Research and Development
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - Nikil Kapur
- School of Mechanical Engineering
- University of Leeds
- Leeds
- UK
| | - Louise Sim
- School of Food Science and Nutrition
- University of Leeds
- Leeds
- UK
| | - Connor J. Taylor
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | - Jialin Wen
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Xumu Zhang
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - A. John Blacker
- Institute of Process Research and Development
- School of Chemistry
- University of Leeds
- Leeds
- UK
| |
Collapse
|
34
|
Rosso C, Gisbertz S, Williams JD, Gemoets HPL, Debrouwer W, Pieber B, Kappe CO. An oscillatory plug flow photoreactor facilitates semi-heterogeneous dual nickel/carbon nitride photocatalytic C–N couplings. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00036a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dual nickel/photocatalytic C–N couplings are performed with an organic heterogeneous photocatalyst, in an oscillatory plug flow reactor. Reaction was complete in 20 min residence time, enabling 2.7 g h−1 throughput and 10-fold catalyst recycling.
Collapse
Affiliation(s)
- Cristian Rosso
- Institute of Chemistry
- University of Graz
- 8010 Graz
- Austria
| | - Sebastian Gisbertz
- Department of Biomolecular Systems
- Max-Planck-Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
- Department of Chemistry and Biochemistry
| | - Jason D. Williams
- Institute of Chemistry
- University of Graz
- 8010 Graz
- Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)
| | | | | | - Bartholomäus Pieber
- Department of Biomolecular Systems
- Max-Planck-Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
| | - C. Oliver Kappe
- Institute of Chemistry
- University of Graz
- 8010 Graz
- Austria
- Center for Continuous Flow Synthesis and Processing (CCFLOW)
| |
Collapse
|
35
|
Doyle BJ, Gutmann B, Bittel M, Hubler T, Macchi A, Roberge DM. Handling of Solids and Flow Characterization in a Baffleless Oscillatory Flow Coil Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brendon J. Doyle
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Bernhard Gutmann
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Michael Bittel
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Thierry Hubler
- Chemical Manufacturing Technologies, Lonza AG, CH-3930 Visp, Switzerland
| | - Arturo Macchi
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, K1N 6N5 Ottawa, Canada
| | | |
Collapse
|
36
|
Pomberger A, Mo Y, Nandiwale KY, Schultz VL, Duvadie R, Robinson RI, Altinoglu EI, Jensen KF. A Continuous Stirred-Tank Reactor (CSTR) Cascade for Handling Solid-Containing Photochemical Reactions. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00378] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Pomberger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kakasaheb Y. Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Victor L. Schultz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rohit Duvadie
- Global Discovery Chemistry - Chemical Technology Group, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Richard I. Robinson
- Global Discovery Chemistry - Chemical Technology Group, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Erhan I. Altinoglu
- Chemical and Pharmaceutical Profiling, Novartis Global Drug Development, 700 Main Street South, Cambridge, Massachusetts 02139, United States
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Nakano M, Morimoto T, Noguchi J, Tanimoto H, Mori H, Tokumoto SI, Koishi H, Nishiyama Y, Kakiuchi K. Accelerated Organic Photoreactions in Flow Microreactors under Gas-Liquid Slug Flow Conditions Using N2 Gas as an Unreactive Substance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Momoe Nakano
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Jiro Noguchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hiroki Tanimoto
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hajime Mori
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Shin-ichi Tokumoto
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Hideyuki Koishi
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Yasuhiro Nishiyama
- Department of Chemical Industry, Industrial Technology Center of Wakayama Prefecture (WINTEC), 60 Ogura, Wakayama 649-6261, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
38
|
Schmölzer K, Weingarten M, Baldenius K, Nidetzky B. Glycosynthase Principle Transformed into Biocatalytic Process Technology: Lacto-N-triose II Production with Engineered exo-Hexosaminidase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01288] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | | | - Kai Baldenius
- BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria
| |
Collapse
|
39
|
Liu D, Jing Y, Wang K, Wang Y, Luo G. Reaction study of α-phase NaYF 4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy. NANOSCALE 2019; 11:8363-8371. [PMID: 30984927 DOI: 10.1039/c8nr09957j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
α-Phase NaREF4 is the necessary intermediate to obtain β-phase NaREF4, which is good at upconversion luminescence. We herein report microreaction research on the generation of α-NaYF4:Yb,Er nanoparticles. Owing to the fast heating and cooling ability of a quartz microreactor, α-NaYF4:Yb,Er was successfully generated within a reaction time of <10 min. The results showed that it was difficult to complete the α-NaYF4:Yb,Er generation reaction in such a short reaction time by using the traditional synthetic route with a precursor solution containing NaF. However, as we changed the precursor to a solution containing amorphous NaREF4, the yield of α-NaYF4:Yb,Er increased to 95%. By focusing on applying the new precursor solution, we investigated the influence of the reaction temperature on the morphology of α-NaYF4:Yb,Er and exhibited the effects of size and crystallinity of α-NaYF4:Yb,Er on the generation of β-NaYF4:Yb,Er. Finally, an improved microreaction system with an in-line mixing of NH4REF4 and NaOA solutions was developed, whose products were successfully converted to uniform β-NaYF4:Yb,Er nanocrystals through the Ostwald-ripening process. The new reaction path and the reaction device further opened a door for the highly efficient synthesis of upconversion luminescent nanoparticles.
Collapse
Affiliation(s)
- Di Liu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | |
Collapse
|
40
|
Neumaier JM, Madani A, Klein T, Ziegler T. Low-budget 3D-printed equipment for continuous flow reactions. Beilstein J Org Chem 2019; 15:558-566. [PMID: 30873240 PMCID: PMC6404462 DOI: 10.3762/bjoc.15.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
This article describes the development and manufacturing of lab equipment, which is needed for the use in flow chemistry. We developed a rack of four syringe pumps controlled by one Arduino computer, which can be manufactured with a commonly available 3D printer and readily available parts. Also, we printed various flow reactor cells, which are fully customizable for each individual reaction. With this equipment we performed some multistep glycosylation reactions, where multiple 3D-printed flow reactors were used in series.
Collapse
Affiliation(s)
- Jochen M Neumaier
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Amiera Madani
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Klein
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Thomas Ziegler
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Clayton AD, Manson JA, Taylor CJ, Chamberlain TW, Taylor BA, Clemens G, Bourne RA. Algorithms for the self-optimisation of chemical reactions. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00209j] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-optimising chemical systems have experienced a growing momentum in recent years. Herein, we review algorithms used for the self-optimisation of chemical reactions in an accessible way for the general chemist.
Collapse
Affiliation(s)
- Adam D. Clayton
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Jamie A. Manson
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Connor J. Taylor
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | - Thomas W. Chamberlain
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| | | | | | - Richard A. Bourne
- Institute of Process Research and Development
- School of Chemistry & School of Chemical and Process Engineering
- University of Leeds
- UK
| |
Collapse
|
42
|
Akwi FM, Watts P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun (Camb) 2018; 54:13894-13928. [PMID: 30483683 DOI: 10.1039/c8cc07427e] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A general outlook of the changing face of chemical synthesis is provided in this article through recent applications of continuous flow processing in both industry and academia. The benefits, major challenges and limitations associated with the use of this mode of processing are also given due attention as an attempt to put into perspective the current position of continuous flow processing, either as an alternative or potential combinatory technology for batch processing.
Collapse
Affiliation(s)
- Faith M Akwi
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa.
| | | |
Collapse
|
43
|
Thompson MP, Peñafiel I, Cosgrove SC, Turner NJ. Biocatalysis Using Immobilized Enzymes in Continuous Flow for the Synthesis of Fine Chemicals. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00305] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Matthew P. Thompson
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Itziar Peñafiel
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
44
|
Devine PN, Howard RM, Kumar R, Thompson MP, Truppo MD, Turner NJ. Extending the application of biocatalysis to meet the challenges of drug development. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0055-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Koenig SG, Leahy DK, Wells AS. Evaluating the Impact of a Decade of Funding from the Green Chemistry Institute Pharmaceutical Roundtable. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan G. Koenig
- Small Molecule Process Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - David K. Leahy
- Process Chemistry, Takeda Pharmaceuticals International, Cambridge, Massachusetts 02139, United States
| | - Andrew S. Wells
- CTC Ltd., Parklands, Northage Close, Quorn, Leicestershire LE12 8AT, U.K
| |
Collapse
|
46
|
Jolley KE, Chapman MR, Blacker AJ. A general and atom-efficient continuous-flow approach to prepare amines, amides and imines via reactive N-chloramines. Beilstein J Org Chem 2018; 14:2220-2228. [PMID: 30202475 PMCID: PMC6122332 DOI: 10.3762/bjoc.14.196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/10/2018] [Indexed: 01/04/2023] Open
Abstract
Chloramines are an important class of reagents, providing a convenient source of chlorine or electrophilic nitrogen. However, the instability of these compounds is a problem which makes their isolation and handling difficult. To overcome these hazards, a continuous-flow approach is reported which generates and immediately reacts N-chloramines directly, avoiding purification and isolation steps. 2-Chloramines were produced from the reaction of styrenes with N-alkyl-N-sulfonyl-N-chloramines, whilst N-alkyl or N,N'-dialkyl-N-chloramines reacted with anisaldehyde in the presence of t-BuO2H oxidant to afford amides. Primary and secondary imines were produced under continuous conditions from the reaction of N-chloramines with base, with one example subsequently reduced under asymmetric conditions to produce a chiral amine in 94% ee.
Collapse
Affiliation(s)
- Katherine E Jolley
- School of Chemistry, Institute of Process Research and Development, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael R Chapman
- School of Chemistry, Institute of Process Research and Development, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - A John Blacker
- School of Chemistry, Institute of Process Research and Development, University of Leeds, Leeds, LS2 9JT, United Kingdom
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
47
|
Chapman MR, Cosgrove SC, Turner NJ, Kapur N, Blacker AJ. Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael R. Chapman
- School of Chemistry and School of Chemical and Process EngineeringInstitute of Process Research and DevelopmentUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Nikil Kapur
- School of Mechanical EngineeringUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - A. John Blacker
- School of Chemistry and School of Chemical and Process EngineeringInstitute of Process Research and DevelopmentUniversity of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
48
|
Chapman MR, Cosgrove SC, Turner NJ, Kapur N, Blacker AJ. Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen. Angew Chem Int Ed Engl 2018; 57:10535-10539. [PMID: 29741801 DOI: 10.1002/anie.201803675] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/03/2018] [Indexed: 11/10/2022]
Abstract
We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2 O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L-1 h-1 ). This scalable benchtop method provides a distinct advantage over conventional bio-oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space-time yields for bio-oxidation.
Collapse
Affiliation(s)
- Michael R Chapman
- School of Chemistry and School of Chemical and Process Engineering, Institute of Process Research and Development, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sebastian C Cosgrove
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - A John Blacker
- School of Chemistry and School of Chemical and Process Engineering, Institute of Process Research and Development, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
49
|
Yu E, Mangunuru HPR, Telang NS, Kong CJ, Verghese J, Gilliland Iii SE, Ahmad S, Dominey RN, Gupton BF. High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine. Beilstein J Org Chem 2018; 14:583-592. [PMID: 29623120 PMCID: PMC5852550 DOI: 10.3762/bjoc.14.45] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Numerous synthetic methods for the continuous preparation of fine chemicals and active pharmaceutical ingredients (API’s) have been reported in recent years resulting in a dramatic improvement in process efficiencies. Herein we report a highly efficient continuous synthesis of the antimalarial drug hydroxychloroquine (HCQ). Key improvements in the new process include the elimination of protecting groups with an overall yield improvement of 52% over the current commercial process. The continuous process employs a combination of packed bed reactors with continuous stirred tank reactors for the direct conversion of the starting materials to the product. This high-yielding, multigram-scale continuous synthesis provides an opportunity to achieve increase global access to hydroxychloroquine for treatment of malaria.
Collapse
Affiliation(s)
- Eric Yu
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Hari P R Mangunuru
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Nakul S Telang
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Caleb J Kong
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Jenson Verghese
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Stanley E Gilliland Iii
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Saeed Ahmad
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - Raymond N Dominey
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| | - B Frank Gupton
- Department of Chemistry and Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23220, USA
| |
Collapse
|
50
|
Weiberth FJ, Powers MR, Gallin C, McDonald D. Segmented Tube Reactors (STR): A Simple Tool To Screen Multiple Reactions in Parallel in Batch Mode within a Single Tube. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Franz J. Weiberth
- Sanofi US R&D, Synthesis Development, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Matthew R. Powers
- Sanofi US R&D, Synthesis Development, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Connor Gallin
- Sanofi US R&D, Synthesis Development, Northeastern University co-op student, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| | - David McDonald
- Sanofi US R&D, Synthesis Development, Northeastern University co-op student, 153 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|