1
|
Iglhaut M, Freund P, Bach T. Photochemical Deracemization of N-Carboxyanhydrides En Route to Chiral α-Amino Acid Derivatives. Angew Chem Int Ed Engl 2024:e202418873. [PMID: 39412185 DOI: 10.1002/anie.202418873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Indexed: 11/14/2024]
Abstract
Readily accessible, racemic N-carboxyanhydrides (NCAs) of α-amino acids underwent a deracemization reaction upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst. The enantioenriched NCAs (up to 98 % ee) serve as activated α-amino acid surrogates and, due to their instability, they were directly converted into consecutive products. N-Protected α-amino acid esters were obtained after reaction with MeOH and N-benzoylation (14 examples, 70 %-quant., 82-96 % ee). Other consecutive reactions included amide (ten examples, 65 %-quant., 90-98 % ee) and peptide (three examples, 75-89 %, d. r.=97/3 to 94/6) bond formation. Limitations of the method relate for some NCAs to issues with solubility, photooxidation, and high configurational lability.
Collapse
Affiliation(s)
- Maximilian Iglhaut
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Philip Freund
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
2
|
Sugisawa N, Ando A, Fuse S. Rapid and column-chromatography-free peptide chain elongation via a one-flow, three-component coupling approach. Chem Sci 2023; 14:6986-6991. [PMID: 37389269 PMCID: PMC10306071 DOI: 10.1039/d3sc01333b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
Short peptides are extremely important as drugs and building blocks for the syntheses of longer peptides. Both solid- and liquid-phase peptide syntheses suffer from a large number of synthetic steps, high cost, and/or tedious purification. Here, we developed a rapid, mild, inexpensive, and column-chromatography-free peptide chain elongation via a one-flow, three-component coupling (3CC) approach that is the first to use α-amino acid N-carboxy anhydrides (α-NCAs) both as electrophiles and nucleophiles. We demonstrated the high-yielding and column-chromatography-free syntheses of 17 tripeptides, as well as a gram-scale synthesis of a tripeptide. The total synthesis of beefy meaty peptide was achieved by repeating the 3CC approach with the addition of only one column chromatographic purification. We also demonstrated a one-flow tripeptide synthesis via in situ preparation of α-NCA starting from three readily available protected amino acids. With this study, we achieved dramatic reductions in both time and cost compared with typical solid-phase synthesis.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Nagoya 464-8601 Japan
| | - Akira Ando
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Nagoya 464-8601 Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
3
|
Okabe R, Sugisawa N, Fuse S. A micro-flow rapid dual activation approach for urethane-protected α-amino acid N-carboxyanhydride synthesis. Org Biomol Chem 2022; 20:3303-3310. [PMID: 35229099 DOI: 10.1039/d2ob00167e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study demonstrated the rapid dual activation (10 s, 20 °C) of a combination of an α-amino acid N-carboxyanhydride and alkyl chloroformate in the synthesis of a urethane-protected α-amino acid N-carboxyanhydride in a micro-flow reactor. The key to success was the combined use of two amines that activated both substrates with proper timing. Three amines, i-Pr2NEt, Me2NBn, or N-ethylmorpholine, were used with pyridine in accordance with the steric bulkiness of a side chain in the α-amino acid N-carboxyanhydride. A variety of 16 urethane-protected α-amino acid N-carboxyanhydrides were synthesized in high yields. The role of amines was investigated based on the measurement of the time-dependent (0.5 to 10 s) decrease of α-amino acid N-carboxyanhydrides and alkyl chloroformates in the presence of amines via flash mixing technology using a micro-flow reactor. It was suggested that the in situ generated acylpyridinium cation was highly active and less prone to causing undesired decomposition compared with the acylammonium cation examined in this study. Thus, even at a very low concentration, the acylpyridinium cation facilitated the desired coupling reaction.
Collapse
Affiliation(s)
- Ren Okabe
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Naoto Sugisawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
4
|
Alfano AI, Lange H, Brindisi M. Amide Bonds Meet Flow Chemistry: A Journey into Methodologies and Sustainable Evolution. CHEMSUSCHEM 2022; 15:e202102708. [PMID: 35015338 PMCID: PMC9304223 DOI: 10.1002/cssc.202102708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Indexed: 06/03/2023]
Abstract
Formation of amide bonds is of immanent importance in organic and synthetic medicinal chemistry. Its presence in "traditional" small-molecule active pharmaceutical ingredients, in linear or cyclic oligo- and polypeptidic actives, including pseudopeptides, has led to the development of dedicated synthetic approaches for the formation of amide bonds starting from, if necessary, suitably protected amino acids. While the use of solid supported reagents is common in traditional peptide synthesis, similar approaches targeting amide bond formation in continuous-flow mode took off more significantly, after a first publication in 2006, only a couple of years ago. Most efforts rely upon the transition of traditional approaches in flow mode, or the combination of solid-phase peptide synthesis principles with flow chemistry, and advantages are mainly seen in improving space-time yields. This Review summarizes and compares the various approaches in terms of basic amide formation, peptide synthesis, and pseudopeptide generation, describing the technological approaches and the advantages that were generated by the specific flow approaches. A final discussion highlights potential future needs and perspectives in terms of greener and more sustainable syntheses.
Collapse
Affiliation(s)
- Antonella Ilenia Alfano
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| | - Heiko Lange
- University of Milano-Bicocca Department of Earth and Environmental SciencesPiazza della Scienza 120126MilanItaly
| | - Margherita Brindisi
- SPOTS-Lab – Sustainable Pharmaceutical and Organic Technology and Synthesis LaboratoryUniversity of Naples ‘Federico II', Department of PharmacyVia Domenico Montesano 4980131NaplesItaly
| |
Collapse
|
5
|
Martin V, Egelund PHG, Johansson H, Thordal Le Quement S, Wojcik F, Sejer Pedersen D. Greening the synthesis of peptide therapeutics: an industrial perspective. RSC Adv 2020; 10:42457-42492. [PMID: 35516773 PMCID: PMC9057961 DOI: 10.1039/d0ra07204d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Solid-phase peptide synthesis (SPPS) is generally the method of choice for the chemical synthesis of peptides, allowing routine synthesis of virtually any type of peptide sequence, including complex or cyclic peptide products. Importantly, SPPS can be automated and is scalable, which has led to its widespread adoption in the pharmaceutical industry, and a variety of marketed peptide-based drugs are now manufactured using this approach. However, SPPS-based synthetic strategies suffer from a negative environmental footprint mainly due to extensive solvent use. Moreover, most of the solvents used in peptide chemistry are classified as problematic by environmental agencies around the world and will soon need to be replaced, which in recent years has spurred a movement in academia and industry to make peptide synthesis greener. These efforts have been centred around solvent substitution, recycling and reduction, as well as exploring alternative synthetic methods. In this review, we focus on methods pertaining to solvent substitution and reduction with large-scale industrial production in mind, and further outline emerging technologies for peptide synthesis. Specifically, the technical requirements for large-scale manufacturing of peptide therapeutics are addressed.
Collapse
Affiliation(s)
- Vincent Martin
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Peter H G Egelund
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Henrik Johansson
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | | | - Felix Wojcik
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| | - Daniel Sejer Pedersen
- Novo Nordisk A/S, CMC API Development Smørmosevej 17-19 DK-2880 Bagsværd Denmark +45 4444 8888
| |
Collapse
|
6
|
Vrijsen JH, Rasines Mazo A, Junkers T, Qiao GG. Accelerated Polypeptide Synthesis via
N
‐Carboxyanhydride Ring Opening Polymerization in Continuous Flow. Macromol Rapid Commun 2020; 41:e2000071. [DOI: 10.1002/marc.202000071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Jeroen Hendrik Vrijsen
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
- Organic and (Bio‐)Polymer Chemistry Institute for Materials Research Hasselt University Agoralaan D 3590 Diepenbeek Belgium
| | - Alicia Rasines Mazo
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| | - Tanja Junkers
- Organic and (Bio‐)Polymer Chemistry Institute for Materials Research Hasselt University Agoralaan D 3590 Diepenbeek Belgium
- Polymer Reaction Design Group School of Chemistry Monash University Clayton Victoria 3800 Australia
| | - Greg Guanghua Qiao
- The Polymer Science Group Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia
| |
Collapse
|
7
|
Sugisawa N, Otake Y, Nakamura H, Fuse S. Single-Step, Rapid, and Mild Synthesis of β-Amino Acid N-Carboxy Anhydrides Using Micro-Flow Technology. Chem Asian J 2020; 15:79-84. [PMID: 31778028 DOI: 10.1002/asia.201901429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Indexed: 01/25/2023]
Abstract
β-Amino acid N-carboxy anhydrides (β-NCAs) are rarely used in the synthesis of β-peptides, which is due mainly to the poor availability of these potentially useful substrates. Herein, we describe the heretofore challenging synthesis of β-NCAs via a single-step, rapid, and mild formation using pH flash switching and flash dilution, which are aspects of micro-flow technology. We synthesized 15 β-NCAs in good to excellent yields that included acid-labile β-NCAs that cannot be readily synthesized using the conventional Leuchs approach. Scaled-up synthesis using this process can be readily achieved via continuous operation.
Collapse
Affiliation(s)
- Naoto Sugisawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,Present address: Department of Basic Medical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| |
Collapse
|
8
|
Gordon CP. The renascence of continuous-flow peptide synthesis - an abridged account of solid and solution-based approaches. Org Biomol Chem 2019; 16:180-196. [PMID: 29255827 DOI: 10.1039/c7ob02759a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Within a decade of Merrifield's seminal description of solid-phase peptide synthesis, the synergies between solid-phase approaches and flow synthesis were noted by a number of groups. However, despite the various advantages flow brings to peptide synthesis, throughout the 1990s and 2000s, interest in the technique was overshadowed by microwave assisted approaches. However, the current expansion of flow technologies has reinvigorated interest in both solid-phase and solution-phase continuous-flow approaches for assembling peptides. This perspective traces the introduction and evolution of continuous-flow solid-phase synthesis from a practical aspect with a particular focus on solid supports, acylation protocols, and racemisation suppression. Practical aspects of solution-phase continuous-flow peptide synthesis are also considered with an evaluation of microreactor systems, coupling protocols, and fragment-based approaches for assembly of extended peptide units.
Collapse
Affiliation(s)
- Christopher P Gordon
- School of Science and Health, Western Sydney University, Locked Bag, 1797, Penrith South, DC, Australia.
| |
Collapse
|
9
|
Isidro-Llobet A, Kenworthy MN, Mukherjee S, Kopach ME, Wegner K, Gallou F, Smith AG, Roschangar F. Sustainability Challenges in Peptide Synthesis and Purification: From R&D to Production. J Org Chem 2019; 84:4615-4628. [PMID: 30900880 DOI: 10.1021/acs.joc.8b03001] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a growing interest in therapeutic peptides within the pharmaceutical industry with more than 50 peptide drugs on the market, approximately 170 in clinical trials, and >200 in preclinical development. However, the current state of the art in peptide synthesis involves primarily legacy technologies with use of large amounts of highly hazardous reagents and solvents and little focus on green chemistry and engineering. In 2016, the ACS Green Chemistry Institute Pharmaceutical Roundtable identified development of greener processes for peptide API as a critical unmet need, and as a result, a new Roundtable team formed to address this important area. The initial focus of this new team is to highlight best practices in peptide synthesis and encourage much needed innovations. In this Perspective, we aim to summarize the current challenges of peptide synthesis and purification in terms of sustainability, highlight possible solutions, and encourage synergies between academia, the pharmaceutical industry, and contract research organizations/contract manufacturing organizations.
Collapse
Affiliation(s)
- Albert Isidro-Llobet
- Medicines Research Centre , GlaxoSmithKline , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Martin N Kenworthy
- Pharmaceutical Technology and Development , AstraZeneca , Silk Road Business Park, Charter Way , Macclesfield SK10 2NA , U.K
| | - Subha Mukherjee
- Chemical and Synthetic Development , Bristol-Myers Squibb Company , One Squibb Drive , New Brunswick , New Jersey 08903 , United States
| | - Michael E Kopach
- Small Molecule Design and Development , Eli Lilly and Company , 1400 West Raymond Street , Indianapolis , Indiana , United States
| | - Katarzyna Wegner
- Active Pharmaceutical Ingredient Development , IPSEN Manufacturing Ireland, Ltd. , Blanchardstown Industrial Park , Dublin 15 , Ireland
| | - Fabrice Gallou
- Chemical & Analytical Development , Novartis , 4056 Basel , Switzerland
| | - Austin G Smith
- Drug Substance Process Development , Amgen, Inc. , 1 Amgen Center Drive , Thousand Oaks , California 91320 , United States
| | - Frank Roschangar
- Chemical Development , Boehringer Ingelheim Pharmaceuticals , Ridgefield , Connecticut 06877 , United States
| |
Collapse
|
10
|
|
11
|
Otake Y, Nakamura H, Fuse S. Rapid and Mild Synthesis of Amino Acid N-Carboxy Anhydrides: Basic-to-Acidic Flash Switching in a Microflow Reactor. Angew Chem Int Ed Engl 2018; 57:11389-11393. [PMID: 29998576 DOI: 10.1002/anie.201803549] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Polymerization of N-carboxy anhydrides (NCAs) is the primary process used to prepare polypeptides. The synthesis of various pure NCAs is key to the efficient synthesis of polypeptides. The only practical method that can be used to synthesize NCAs requires harsh acidic conditions that make acid-labile substrates unusable and results in an undesired ring opening of NCAs. Basic-to-acidic flash switching and subsequent flash dilution technology in a microflow reactor was used to demonstrate the synthesis of NCAs. It is both rapid (0.1 s) and mild (20 °C) and includes substrates containing acid-labile functional groups. The basic-to-acidic flash switching enabled both an acceleration of the desired NCA formation and avoided the undesired ring opening of NCAs. The flash dilution precluded the undesired decomposition of acid-labile functional groups. The developed process allowed the synthesis of various NCAs which cannot be readily synthesized using conventional batch methods.
Collapse
Affiliation(s)
- Yuma Otake
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
12
|
Otake Y, Nakamura H, Fuse S. Rapid and Mild Synthesis of Amino Acid N
-Carboxy Anhydrides: Basic-to-Acidic Flash Switching in a Microflow Reactor. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuma Otake
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
- School of Life Science and Technology; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shinichiro Fuse
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|