1
|
Rehman GU, Vetter T, Martin PA. Investigation of Temperature Cycling with Coupled Vessels for Efficient Deracemization of NMPA. CRYSTAL GROWTH & DESIGN 2023; 23:5428-5436. [PMID: 37547885 PMCID: PMC10402294 DOI: 10.1021/acs.cgd.2c01138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/18/2023] [Indexed: 08/08/2023]
Abstract
Chiral compounds can exist as pairs of nonsuperimposable stereoisomers (enantiomers) possessing the same physical properties but interacting differently with biological systems. This makes them interesting materials to be explored by the pharmaceutical and food industries. In this study, to obtain pure enantiomers from their conglomerates, a method that involves using a two-vessel system for deracemization of N-(2-methylbenzylidene) phenylglycine amide (NMPA) was developed. In this method, a suspension was transferred with a pulsating pumping profile between two inter-connected stirred vessels that were set at constant temperatures. As the suspension was exposed to more rapid changes in temperature, it resulted in the speeding up of the process and thus enhancing productivity in comparison to a single vessel system. The results confirmed successful deracemization of NMPA. A modified pumping profile and tubing design eliminated the issue of clogging of the transfer tubes and ensured effective suspension transfer for longer durations. Operating parameters, such as initial enantiomeric excess, vessel residence time, and suspension density were also investigated. In this method, optimization of residence time was necessary to enhance the efficiency of the process further. Results confirmed that this methodology has the potential to be more adaptable and scalable as it involved no mechanical attrition.
Collapse
Affiliation(s)
| | | | - Philip A. Martin
- Department of Chemical Engineering, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Achermann R, Košir A, Bodák B, Bosetti L, Mazzotti M. Process Performance and Operational Challenges in Continuous Crystallization: A Study of the Polymorphs of L-Glutamic Acid. CRYSTAL GROWTH & DESIGN 2023; 23:2485-2503. [PMID: 37038406 PMCID: PMC10080659 DOI: 10.1021/acs.cgd.2c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The crystallization of the two polymorphs of l-glutamic acid (LGA) is carried out in a continuous crystallization process, and its performance according to different criteria is evaluated. The study aims at identifying suitable operating conditions for producing either αLGA or βLGA with a high polymorphic purity. To this end, we investigate the process both from a theoretical perspective and through experiments using either a single stirred-tank crystallizer or a cascade of two stirred-tank crystallizers in series. In terms of theory, we extend the MSMPR-based steady-state stability analysis of Farmer et al. (Farmer, T. C. et al. AIChE J.2016, 62, 3505-3514) by accounting for the possibility of a nonrepresentative withdrawal of the solid phase from the crystallizer. Additionally, the process is simulated using population balance equations, thereby investigating the effect of operating conditions on polymorphic purity, yield, and productivity. Guided by the model-based conclusions, we identified suitable operating conditions and experimentally tested them. The experimental campaign has demonstrated that βLGA could be successfully and continuously produced in both process configurations according to the theory with performance as expected, whereas that was not possible for αLGA. The difference between the two stems from different operational challenges, whose consequence is that steady-state operation is attained in the case of βLGA but not in that of αLGA. In the former case, the needle-like βLGA crystals, which exhibit no agglomeration, tend to be only slightly oversampled; in the latter case, the prismatic αLGA crystals undergo major agglomeration and hence are very difficult to suspend and effectively withdraw from the crystallizer.
Collapse
Affiliation(s)
| | | | | | | | - Marco Mazzotti
- E-mail: . Phone: +41 44 632
24 56. Fax: +41 44 632 11
41
| |
Collapse
|
3
|
Stocker MW, Harding MJ, Todaro V, Healy AM, Ferguson S. Integrated Purification and Formulation of an Active Pharmaceutical Ingredient via Agitated Bed Crystallization and Fluidized Bed Processing. Pharmaceutics 2022; 14:pharmaceutics14051058. [PMID: 35631643 PMCID: PMC9145956 DOI: 10.3390/pharmaceutics14051058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Integrated API and drug product processing enable molecules with high clinical efficacy but poor physicochemical characteristics to be commercialized by direct co-processing with excipients to produce advanced multicomponent intermediates. Furthermore, developing isolation-free frameworks would enable end-to-end continuous processing of drugs. The aim of this work was to purify a model API (sodium ibuprofen) and impurity (ibuprofen ethyl ester) system and then directly process it into a solid-state formulation without isolating a solid API phase. Confined agitated bed crystallization is proposed to purify a liquid stream of impure API from 4% to 0.2% w/w impurity content through periodic or parallelized operations. This stream is combined with a polymer solution in an intermediary tank, enabling the API to be spray coated directly onto microcrystalline cellulose beads. The spray coating process was developed using a Design of Experiments approach, allowing control over the drug loading efficiency and the crystallinity of the API on the beads by altering the process parameters. The DoE study indicated that the solvent volume was the dominant factor controlling the drug loading efficiency, while a combination of factors influenced the crystallinity. The products from the fluidized bed are ideal for processing into final drug products and can subsequently be coated to control drug release.
Collapse
Affiliation(s)
- Michael W. Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
| | - Matthew J. Harding
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Valerio Todaro
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (V.T.); (A.M.H.)
| | - Anne Marie Healy
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (V.T.); (A.M.H.)
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- National Institute for Bioprocess Research and Training, 24 Foster Avenue, Blackrock, Co., Belfield, A94 X099 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-716-1898
| |
Collapse
|
4
|
Tsushima I, Maeda K, Arafune K, Itoh K, Yamamoto T, Taguchi S, Miki H. Industrial Crystallization of Potassium Sulfate Using a Suspension Crystallizer: Inclusion of Mother Liquor and an Impurity Distribution Model. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ippei Tsushima
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Kouji Maeda
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Koji Arafune
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Kazuhiro Itoh
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Takuji Yamamoto
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Shogo Taguchi
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | | |
Collapse
|
5
|
Mathew Thomas K, Nyande BW, Lakerveld R. Design and Characterization of Kenics Static Mixer Crystallizers. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Tsushima I, Maeda K, Yamamoto T, Arafune K, Miki H. Continuous Crystallization of Phosphoric Acid Using Suspension Crystallizer: Effect of Operating Conditions on Purity of Crystals. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ippei Tsushima
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Kouji Maeda
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Takuji Yamamoto
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Koji Arafune
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Hideo Miki
- Katsuragi Industry Co. Ltd. 5‐4‐6 Minamitsumori, Nishinari‐ku Osaka 557‐0063 Japan
| |
Collapse
|
7
|
Yang Y, Ahmed B, Mitchell C, Quon JL, Siddique H, Houson I, Florence AJ, Papageorgiou CD. Investigation of Wet Milling and Indirect Ultrasound as Means for Controlling Nucleation in the Continuous Crystallization of an Active Pharmaceutical Ingredient. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yihui Yang
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Bilal Ahmed
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
- EPSRC Future CMAC Manufacturing Research Hub, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Christopher Mitchell
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Justin L. Quon
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Humera Siddique
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Ian Houson
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Alastair J. Florence
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Charles D. Papageorgiou
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Polymorphism control of l-Glutamic acid in a single-stage and a two-stage MSMPR crystallizer by different seeding strategies. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
McDonald MA, Salami H, Harris PR, Lagerman CE, Yang X, Bommarius AS, Grover MA, Rousseau RW. Reactive crystallization: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00272k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive crystallization is not new, but there has been recent growth in its use as a means of improving performance and sustainability of industrial processes.
Collapse
Affiliation(s)
- Matthew A. McDonald
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Hossein Salami
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Patrick R. Harris
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Colton E. Lagerman
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Xiaochuan Yang
- Office of Pharmaceutical Quality
- Center for Drug Evaluation and Research
- U.S. Food and Drug Administration
- Silver Spring
- USA
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Martha A. Grover
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| | - Ronald W. Rousseau
- School of Chemical and Biomolecular Engineering
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
10
|
Orehek J, Teslić D, Likozar B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00398] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaka Orehek
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Lek d. d., Sandoz, a Novartis division, Verovškova 57, 1526 Ljubljana, Slovenia
| | - Dušan Teslić
- Lek d. d., Sandoz, a Novartis division, Verovškova 57, 1526 Ljubljana, Slovenia
| | - Blaž Likozar
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
11
|
Li J, Sheng L, Tuo L, Xiao W, Ruan X, Yan X, He G, Jiang X. Membrane-Assisted Antisolvent Crystallization: Interfacial Mass-Transfer Simulation and Multistage Process Control. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jin Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Lei Sheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Linghan Tuo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Wu Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Engineering Laboratory for Petrochemical Energy-efficient Separation Technology of Liaoning Province, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Diab S, Gerogiorgis DI. Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing. Pharmaceutics 2020; 12:E235. [PMID: 32151096 PMCID: PMC7150984 DOI: 10.3390/pharmaceutics12030235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Progress in continuous flow chemistry over the past two decades has facilitated significant developments in the flow synthesis of a wide variety of Active Pharmaceutical Ingredients (APIs), the foundation of Continuous Pharmaceutical Manufacturing (CPM), which has gained interest for its potential to reduce material usage, energy and costs and the ability to access novel processing windows that would be otherwise hazardous if operated via traditional batch techniques. Design space investigation of manufacturing processes is a useful task in elucidating attainable regions of process performance and product quality attributes that can allow insight into process design and optimization prior to costly experimental campaigns and pilot plant studies. This study discusses recent demonstrations from the literature on design space investigation and visualization for continuous API production and highlights attainable regions of recoveries, material efficiencies, flowsheet complexity and cost components for upstream (reaction + separation) via modeling, simulation and nonlinear optimization, providing insight into optimal CPM operation.
Collapse
Affiliation(s)
| | - Dimitrios I. Gerogiorgis
- School of Engineering, Institute for Materials and Processes (IMP), University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FB, Scotland, UK;
| |
Collapse
|
13
|
|
14
|
Zhang G, Shang X, Han W, Zhang L, Ren G, Zhang S. Synthesis, structural characterization, physicochemical properties and transformations of dehydroevodiamine and its hydrochloride salts. CrystEngComm 2020. [DOI: 10.1039/d0ce00136h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Five kinds of dehydroevodiamine (DHED) related crystals were harvested and transformations among evodiamine (EVO), DHED, DHED·HCl·2H2O and rutaecarpine (RUT) were revealed.
Collapse
Affiliation(s)
- Guoshun Zhang
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Xiaoqing Shang
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Wei Han
- Department of Pharmacy
- Shanxi Health Vocational College
- Taiyuan 030012
- China
| | - Lifeng Zhang
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Guolian Ren
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- China
| | - Shuqiu Zhang
- Department of Pharmacy
- Shanxi Medical University
- Taiyuan 030001
- China
| |
Collapse
|