1
|
Feng Báez JP, George De la Rosa MV, Alvarado-Hernández BB, Romañach RJ, Stelzer T. Evaluation of a compact composite sensor array for concentration monitoring of solutions and suspensions via multivariate analysis. J Pharm Biomed Anal 2023; 233:115451. [PMID: 37182364 PMCID: PMC10330539 DOI: 10.1016/j.jpba.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Compact composite probes were identified as a priority to alleviate space constraints in miniaturized unit operations and pharmaceutical manufacturing platforms. Therefore, in this proof of principle study, a compact composite sensor array (CCSA) combining ultraviolet and near infrared features at four different wavelengths (280, 340, 600, 860 nm) in a 380 × 30 mm housing (length x diameter, 7 mm diameter at the probe head), was evaluated for its capabilities to monitor in situ concentration of solutions and suspensions via multivariate analysis using partial least squares (PLS) regression models. Four model active pharmaceutical ingredients (APIs): warfarin sodium isopropanol solvate (WS), lidocaine hydrochloride monohydrate (LID), 6-mercaptopurine monohydrate (6-MP), and acetaminophen (ACM) in their aqueous solution and suspension formulation were used for the assessment. The results demonstrate that PLS models can be applied for the CCSA prototype to measure the API concentrations with similar accuracy (validation samples within the United States Pharmacopeia (USP) limits), compared to univariate CCSA models and multivariate models for an established Raman spectrometer. Specifically, the multivariate CCSA models applied to the suspensions of 6-MP and ACM demonstrate improved accuracy of 63% and 31%, respectively, compared to the univariate CCSA models [1]. On the other hand, the PLS models for the solutions WS and LID showed a reduced accuracy compared to the univariate models [1].
Collapse
Affiliation(s)
- Jean P Feng Báez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | | | - Rodolfo J Romañach
- Department of Chemistry, University of Puerto Rico, Mayagüez Campus, Mayagüez, PR 00681, USA
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA; Crystallization Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA.
| |
Collapse
|
2
|
Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, Bourne RA, Johnson CN, Lapkin AA. A Brief Introduction to Chemical Reaction Optimization. Chem Rev 2023; 123:3089-3126. [PMID: 36820880 PMCID: PMC10037254 DOI: 10.1021/acs.chemrev.2c00798] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 02/24/2023]
Abstract
From the start of a synthetic chemist's training, experiments are conducted based on recipes from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist to develop practical skills and some chemical intuition. This procedure is often kept long into a researcher's career, as new recipes are developed based on similar reaction protocols, and intuition-guided deviations are conducted through learning from failed experiments. However, when attempting to understand chemical systems of interest, it has been shown that model-based, algorithm-based, and miniaturized high-throughput techniques outperform human chemical intuition and achieve reaction optimization in a much more time- and material-efficient manner; this is covered in detail in this paper. As many synthetic chemists are not exposed to these techniques in undergraduate teaching, this leads to a disproportionate number of scientists that wish to optimize their reactions but are unable to use these methodologies or are simply unaware of their existence. This review highlights the basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to process scale-up and can thereby serve as a reference for inspired scientists for each of these techniques, detailing several of their respective applications.
Collapse
Affiliation(s)
- Connor J. Taylor
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Alexander Pomberger
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kobi C. Felton
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Rachel Grainger
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, U.K.
| | - Magda Barecka
- Chemical
Engineering Department, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Chemistry
and Chemical Biology Department, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Cambridge
Centre for Advanced Research and Education in Singapore, 1 Create Way, 138602 Singapore
| | - Thomas W. Chamberlain
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Richard A. Bourne
- Institute
of Process Research and Development, School of Chemistry and School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Alexei A. Lapkin
- Innovation
Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Usutani H, Yamamoto K, Hashimoto K. Process Intensification of a Napabucasin Manufacturing Method Utilizing Microflow Chemistry. ACS OMEGA 2023; 8:10373-10382. [PMID: 36969467 PMCID: PMC10034843 DOI: 10.1021/acsomega.2c07997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Microflow chemistry is one of the newest and most efficient technologies used today for the safe and effective production of medicines. In this paper, we show the use of this technology in the development of a manufacturing method for napabucasin, which has potential in the treatment of colorectal and pancreatic cancers. In conventional "batch-type" reactor systems, the generation of side products can be controlled with traditional techniques such as reagent reverse-addition and temperature control. However, there is a limitation to which the yield and purity can be improved by these methods, as both are constrained by the efficiency of heat/mass transfer. Applying microflow chemistry technology alters the parameters of the constraint through the use of precise mixing in a microchannel, which offers increased possibility for improving yields and process intensification of the napabucasin process. Reported herein is a proof-of-concept study for the scale-up production of napabucasin using microflow chemistry techniques for manufacturing at the kilogram scale.
Collapse
|
4
|
Cohen B, Lehnherr D, Sezen-Edmonds M, Forstater JH, Frederick MO, Deng L, Ferretti AC, Harper K, Diwan M. Emerging Reaction Technologies in Pharmaceutical Development: Challenges and Opportunities in Electrochemistry, Photochemistry, and Biocatalysis. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Masson E, Maciejewski EM, Wheelhouse KMP, Edwards LJ. Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward Masson
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Erin M. Maciejewski
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | | | - Lee J. Edwards
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| |
Collapse
|
6
|
Lehmann H, Ruppen T, Knoepfel T. Scale-Up of Diazonium Salts and Azides in a Three-Step Continuous Flow Sequence. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hansjoerg Lehmann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Thomas Ruppen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Thomas Knoepfel
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
7
|
Abstract
Transition metal catalysts play a vital role in a wide range of industrial organic processes. The large-scale production of chemicals relying on catalyzed organic reactions represents a sustainable approach to supply society with end products for many daily life applications. Homogeneous (mainly for academic uses) and heterogeneous (crucial in industrial processes) metal-based catalysts have been developed for a plethora of organic reactions. The search for more sustainable strategies has led to the development of a countless number of metal-supported catalysts, nanosystems, and electrochemical and photochemical catalysts. In this work, although a vast number of transition metals can be used in this context, special attention is devoted to Ir- and Pd-based catalysts in the industrial manufacture of pharmaceutical drugs. Pd is by far the most widely used and versatile catalyst not only in academia but also in industry. Moreover, Ir-based complexes have emerged as attractive catalysts, particularly in asymmetric hydrogenation reactions. Ir- and Pd-based asymmetric reductions, aminations, cross-coupling reactions, and C–H activation are covered herein in the production of biologically active compounds or precursors; adaptation to bulk conditions is particularly highlighted.
Collapse
|
8
|
Application of a System Model for Continuous Manufacturing of an Active Pharmaceutical Ingredient in an Industrial Environment. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09609-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Capellades G, Bonsu JO, Myerson AS. Impurity incorporation in solution crystallization: diagnosis, prevention, and control. CrystEngComm 2022. [DOI: 10.1039/d1ce01721g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work highlights recent advances in the diagnosis, prevention, and control of impurity incorporation during solution crystallization.
Collapse
Affiliation(s)
- Gerard Capellades
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, USA
| | - Jacob O. Bonsu
- Department of Chemical Engineering, Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey 08028, USA
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
10
|
Nandiwale KY, Hart T, Zahrt AF, Nambiar AMK, Mahesh PT, Mo Y, Nieves-Remacha MJ, Johnson MD, García-Losada P, Mateos C, Rincón JA, Jensen KF. Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00054g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Research-scale fully automated flow platform for reaction self-optimization with solids handling facilitates identification of optimal conditions for continuous manufacturing of pharmaceuticals while reducing amounts of raw materials consumed.
Collapse
Affiliation(s)
- Kakasaheb Y. Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Travis Hart
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Andrew F. Zahrt
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Anirudh M. K. Nambiar
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Prajwal T. Mahesh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Yiming Mo
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | - Martin D. Johnson
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Pablo García-Losada
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
11
|
Continuous Flow Synthesis of Anticancer Drugs. Molecules 2021; 26:molecules26226992. [PMID: 34834084 PMCID: PMC8625794 DOI: 10.3390/molecules26226992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/27/2022] Open
Abstract
Continuous flow chemistry is by now an established and valued synthesis technology regularly exploited in academic and industrial laboratories to bring about the improved preparation of a variety of molecular structures. Benefits such as better heat and mass transfer, improved process control and safety, a small equipment footprint, as well as the ability to integrate in-line analysis and purification tools into telescoped sequences are often cited when comparing flow to analogous batch processes. In this short review, the latest developments regarding the exploitation of continuous flow protocols towards the synthesis of anticancer drugs are evaluated. Our efforts focus predominately on the period of 2016-2021 and highlight key case studies where either the final active pharmaceutical ingredient (API) or its building blocks were produced continuously. It is hoped that this manuscript will serve as a useful synopsis showcasing the impact of continuous flow chemistry towards the generation of important anticancer drugs.
Collapse
|
12
|
Yang Y, Ahmed B, Mitchell C, Quon JL, Siddique H, Houson I, Florence AJ, Papageorgiou CD. Investigation of Wet Milling and Indirect Ultrasound as Means for Controlling Nucleation in the Continuous Crystallization of an Active Pharmaceutical Ingredient. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yihui Yang
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Bilal Ahmed
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
- EPSRC Future CMAC Manufacturing Research Hub, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Christopher Mitchell
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Justin L. Quon
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Humera Siddique
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Ian Houson
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Alastair J. Florence
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Charles D. Papageorgiou
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Elliott LD, Booker-Milburn KI, Lennox AJJ. Daisy-Chaining Photo- and Thermal Chemistry: Multistep Continuous Flow Synthesis of Visible-Light-Mediated Photochemistry with a High-Temperature Cascade Reaction. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke D. Elliott
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | | |
Collapse
|
14
|
Salique F, Musina A, Winter M, Yann N, Roth PMC. Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.701910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Despite their widespread use in the chemical industries, hydrogenation reactions remain challenging. Indeed, the nature of reagents and catalysts induce intrinsic safety challenges, in addition to demanding process development involving a 3-phase system. Here, to address common issues, we describe a successful process intensification study using a meso-scale flow reactor applied to a hydrogenation reaction of ethyl cinnamate at kilo lab scale with heterogeneous catalysis. This method relies on the continuous pumping of a catalyst slurry, delivering fresh catalyst through a structured flow reactor in a continuous fashion and a throughput up to 54.7 g/h, complete conversion and yields up to 99%. This article describes the screening of equipment, reactions conditions and uses statistical analysis methods (Monte Carlo/DoE) to improve the system further and to draw conclusions on the key influential parameters (temperature and residence time).
Collapse
|
15
|
Lebl R, Bachmann S, Tosatti P, Sedelmeier J, Püntener K, Williams JD, Kappe CO. Catalytic Static Mixer-Enabled Hydrogenation of a Key Fenebrutinib Intermediate: Real-Time Analysis for a Stable and Scalable Process. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- René Lebl
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - Stephan Bachmann
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Paolo Tosatti
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Joerg Sedelmeier
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Kurt Püntener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CCFLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, Graz 8010, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, Graz 8010, Austria
| |
Collapse
|
16
|
Characterizing the Impact of Spray Dried Particle Morphology on Tablet Dissolution Using Quantitative X-Ray Microscopy. Eur J Pharm Sci 2021; 165:105921. [PMID: 34229077 DOI: 10.1016/j.ejps.2021.105921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
For oral solid dosage forms, disintegration and dissolution properties are closely related to the powders and particles used in their formulation. However, there remains a strong need to characterize the impact of particle structures on tablet compaction and performance. Three-dimensional non-invasive tomographic imaging plays an increasingly essential role in the characterization of drug substances, drug product intermediates, and drug products. It can reveal information hidden at the micro-scale which traditional characterization approaches fail to divulge due to a lack of resolution. In this study, two batches of spray-dried particles (SDP) and two corresponding tablets of an amorphous product, merestinib (LY2801653), were analyzed with 3D X-Ray Microscopy. Artificial intelligence-based image analytics were used to quantify physical properties, which were then correlated with dissolution behavior. The correlation derived from the image-based characterization was validated with conventional laboratory physical property measurements. Quantitative insights obtained from image-analysis including porosity, pore size distribution, surface area and pore connectivity helped to explain the differences in dissolution behavior between the two tablets, with root causes traceable to the microstructure differences in their corresponding SDPs.
Collapse
|
17
|
Capellades G, Neurohr C, Briggs N, Rapp K, Hammersmith G, Brancazio D, Derksen B, Myerson AS. On-Demand Continuous Manufacturing of Ciprofloxacin in Portable Plug-and-Play Factories: Implementation and In Situ Control of Downstream Production. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerard Capellades
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Clemence Neurohr
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Naomi Briggs
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Kersten Rapp
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Gregory Hammersmith
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - David Brancazio
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Bridget Derksen
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, E19-502D, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
18
|
Hu C. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J Flow Chem 2021; 11:243-263. [PMID: 34026279 PMCID: PMC8130218 DOI: 10.1007/s41981-021-00164-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Pharmaceutical production remains one of the last industries that predominantly uses batch processes, which are inefficient and can cause drug shortages due to the long lead times or quality defects. Consequently, pharmaceutical companies are transitioning away from outdated batch lines, in large part motivated by the many advantages of continuous manufacturing (e.g., low cost, quality assurance, shortened lead time). As chemical reactions are fundamental to any drug production process, the selection of reactor and its design are critical to enhanced performance such as improved selectivity and yield. In this article, relevant theories, and models, as well as their required input data are summarized to assist the reader in these tasks, focusing on continuous reactions. Selected examples that describe the application of plug flow reactors (PFRs) and continuous-stirred tank reactors (CSTRs)-in-series within the pharmaceutical industry are provided. Process analytical technologies (PATs), which are important tools that provide real-time in-line continuous monitoring of reactions, are recommended to be considered during the reactor design process (e.g., port design for the PAT probe). Finally, other important points, such as density change caused by thermal expansion or solid precipitation, clogging/fouling, and scaling-up, are discussed. Graphical abstract
Collapse
Affiliation(s)
- Chuntian Hu
- CONTINUUS Pharmaceuticals, Woburn, MA 01801 USA
| |
Collapse
|
19
|
Johnson MD, Burcham CL, May SA, Calvin JR, McClary Groh J, Myers SS, Webster LP, Roberts JC, Reddy VR, Luciani CV, Corrigan AP, Spencer RD, Moylan R, Boyse R, Murphy JD, Stout JR. API Continuous Cooling and Antisolvent Crystallization for Kinetic Impurity Rejection in cGMP Manufacturing. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Martin D. Johnson
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | | | - Scott A. May
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Joel R. Calvin
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Jennifer McClary Groh
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Steven S. Myers
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Luke P. Webster
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Jeffrey C. Roberts
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Venkata Ramana Reddy
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | - Carla V. Luciani
- Eli Lilly and Company, Process Development, Indianapolis, Indiana 46285, United States
| | | | | | - Robert Moylan
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - Raymond Boyse
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - John D. Murphy
- Eli Lilly Kinsale, Manufacturing, Dunderrow, Kinsale, Cork, Ireland
| | - James R. Stout
- D&M Continuous Solutions, LLC, Greenwood, Indiana 46113, United States
| |
Collapse
|
20
|
Zhu R, Reddy R, Ding M, Xu M, Deng C, Tadayon S, Li H, Depew K, Lane B. Development and Scale-Up of a Continuous Manufacturing Process for a Hydrazine Condensation Reaction. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruiheng Zhu
- Shanghai SynTheAll Pharmaceutical Company Limited (“STA”), WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Ramesh Reddy
- Shanghai SynTheAll Pharmaceutical Company Limited (“STA”), WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Man Ding
- Shanghai SynTheAll Pharmaceutical Company Limited (“STA”), WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Ming Xu
- Shanghai SynTheAll Pharmaceutical Company Limited (“STA”), WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Chaoyi Deng
- Shanghai SynTheAll Pharmaceutical Company Limited (“STA”), WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Sam Tadayon
- Shanghai SynTheAll Pharmaceutical Company Limited (“STA”), WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Hui Li
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Kristopher Depew
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| | - Benjamin Lane
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Duan S, Feng X, Gonzalez M, Bader S, Hayward C, Ljubicic T, Lu J, Mustakis J, Maloney M, Rainville J, Zhang X. Developing a Multistep Continuous Manufacturing Process for (1R,2R)-2-Amino-1-methylcyclopentan-1-ol. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengquan Duan
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xichun Feng
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Miguel Gonzalez
- Asymchem Inc., 600 Airport Blvd. Suite 1000, Morrisville, North Carolina 27516, United States
| | - Scott Bader
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Cheryl Hayward
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Tomislav Ljubicic
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jiangping Lu
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jason Mustakis
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark Maloney
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Joseph Rainville
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Xin Zhang
- Asymchem Life Science (Tianjin) Co., Ltd., No. 71, 7th Avenue, TEDA, Tianjin 300457, P. R. China
| |
Collapse
|
22
|
Development of Facile and Simple Processes for the Heterogeneous Pd-Catalyzed Ligand-Free Continuous-Flow Suzuki–Miyaura Coupling. Catalysts 2020. [DOI: 10.3390/catal10101209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Suzuki–Miyaura coupling reaction is one of the most widely utilized C–C bond forming methods to create (hetero)biaryl scaffolds. The continuous-flow reaction using heterogeneous catalyst-packed cartridges is a practical and efficient synthetic method to replace batch-type reactions. A continuous-flow ligand-free Suzuki–Miyaura coupling reaction of (hetero)aryl iodides, bromides, and chlorides with (hetero)aryl boronic acids was developed using cartridges packed with spherical resin (tertiary amine-based chelate resin: WA30)-supported palladium catalysts (7% Pd/WA30). The void space in the cartridge caused by the spherical catalyst structures enables the smooth flow of a homogeneously dissolved reaction solution that consists of a mixture of organic and aqueous solvents and is delivered by the use of a single syringe pump. Clogging or serious backpressure was not observed.
Collapse
|
23
|
Baumann M, Moody TS, Smyth M, Wharry S. Overcoming the Hurdles and Challenges Associated with Developing Continuous Industrial Processes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001278] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marcus Baumann
- School of Chemistry Science Centre University College Dublin South Belfield D04 N2E2 Ireland
| | - Thomas S. Moody
- Almac Group Ltd. 20 Seagoe Industrial Estate Craigavon BT63 5QD United Kingdom
- Arran Chemical Company Unit 1 Monksland Industrial Estate Athlone, Co. Roscommon Ireland
| | - Megan Smyth
- Almac Group Ltd. 20 Seagoe Industrial Estate Craigavon BT63 5QD United Kingdom
| | - Scott Wharry
- Almac Group Ltd. 20 Seagoe Industrial Estate Craigavon BT63 5QD United Kingdom
| |
Collapse
|
24
|
Doyle BJ, Elsner P, Gutmann B, Hannaerts O, Aellig C, Macchi A, Roberge DM. Mini-Monoplant Technology for Pharmaceutical Manufacturing. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Brendon J. Doyle
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Petteri Elsner
- API Development Services, Lonza AG, CH-3930 Visp, Switzerland
| | | | | | - Christof Aellig
- API Development Services, Lonza AG, CH-3930 Visp, Switzerland
| | - Arturo Macchi
- Centre for Catalysis Research and Innovation, Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
25
|
Içten E, Maloney AJ, Beaver MG, Shen DE, Zhu X, Graham LR, Robinson JA, Huggins S, Allian A, Hart R, Walker SD, Rolandi P, Braatz RD. A Virtual Plant for Integrated Continuous Manufacturing of a Carfilzomib Drug Substance Intermediate, Part 1: CDI-Promoted Amide Bond Formation. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Elçin Içten
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew J. Maloney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew G. Beaver
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Dongying Erin Shen
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaoxiang Zhu
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lauren R. Graham
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jo Anna Robinson
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seth Huggins
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ayman Allian
- Process Development, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Roger Hart
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Shawn D. Walker
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Pablo Rolandi
- Process Development, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Richard D. Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Fernandez-Puertas E, Robinson AJ, Robinson H, Sathiyalingam S, Stubbs H, Edwards LJ. Evaluation and Screening of Spherical Pd/C for Use as a Catalyst in Pharmaceutical-Scale Continuous Hydrogenations. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Hannah Robinson
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG15NY, U.K
| | | | - Heather Stubbs
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG15NY, U.K
| | - Lee J. Edwards
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG15NY, U.K
| |
Collapse
|
27
|
Li B, Weisenburger GA, McWilliams JC. Practical Considerations and Examples in Adapting Amidations to Continuous Flow Processing in Early Development. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bryan Li
- Chemical Research & Development, Pharmaceutical Science Small Molecules Division, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Gerald A. Weisenburger
- Chemical Research & Development, Pharmaceutical Science Small Molecules Division, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - J. Christopher McWilliams
- Chemical Research & Development, Pharmaceutical Science Small Molecules Division, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
Diab S, Gerogiorgis DI. Design Space Identification and Visualization for Continuous Pharmaceutical Manufacturing. Pharmaceutics 2020; 12:E235. [PMID: 32151096 PMCID: PMC7150984 DOI: 10.3390/pharmaceutics12030235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
Progress in continuous flow chemistry over the past two decades has facilitated significant developments in the flow synthesis of a wide variety of Active Pharmaceutical Ingredients (APIs), the foundation of Continuous Pharmaceutical Manufacturing (CPM), which has gained interest for its potential to reduce material usage, energy and costs and the ability to access novel processing windows that would be otherwise hazardous if operated via traditional batch techniques. Design space investigation of manufacturing processes is a useful task in elucidating attainable regions of process performance and product quality attributes that can allow insight into process design and optimization prior to costly experimental campaigns and pilot plant studies. This study discusses recent demonstrations from the literature on design space investigation and visualization for continuous API production and highlights attainable regions of recoveries, material efficiencies, flowsheet complexity and cost components for upstream (reaction + separation) via modeling, simulation and nonlinear optimization, providing insight into optimal CPM operation.
Collapse
Affiliation(s)
| | - Dimitrios I. Gerogiorgis
- School of Engineering, Institute for Materials and Processes (IMP), University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FB, Scotland, UK;
| |
Collapse
|
29
|
Reizman BJ, Cole KP, Hess M, Burt JL, Maloney TD, Johnson MD, Laurila ME, Cope RF, Luciani CV, Buser JY, Campbell BM, Forst MB, Mitchell D, Braden TM, Lippelt CK, Boukerche M, Starkey DR, Miller RD, Chen J, Sun B, Kwok M, Zhang X, Tadayon S, Huang P. Small-Volume Continuous Manufacturing of Merestinib. Part 2. Technology Transfer and cGMP Manufacturing. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00442] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Brandon J. Reizman
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Kevin P. Cole
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Molly Hess
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Justin L. Burt
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Todd D. Maloney
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Martin D. Johnson
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Michael E. Laurila
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Richard F. Cope
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Carla V. Luciani
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jonas Y. Buser
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Bradley M. Campbell
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Mindy B. Forst
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - David Mitchell
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Timothy M. Braden
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Christopher K. Lippelt
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Moussa Boukerche
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Derek R. Starkey
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Richard D. Miller
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jing Chen
- Shanghai SynTheAll Pharmaceutical Co., Ltd. (“STA”), No. 13 Building, #90 Delin Rd, WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Baoquan Sun
- Shanghai SynTheAll Pharmaceutical Co., Ltd. (“STA”), No. 13 Building, #90 Delin Rd, WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Martin Kwok
- Shanghai SynTheAll Pharmaceutical Co., Ltd. (“STA”), No. 13 Building, #90 Delin Rd, WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Xin Zhang
- Shanghai SynTheAll Pharmaceutical Co., Ltd. (“STA”), No. 13 Building, #90 Delin Rd, WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Sam Tadayon
- Shanghai SynTheAll Pharmaceutical Co., Ltd. (“STA”), No. 13 Building, #90 Delin Rd, WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| | - Ping Huang
- Shanghai SynTheAll Pharmaceutical Co., Ltd. (“STA”), No. 13 Building, #90 Delin Rd, WaiGaoQiao Free Trade Zone, Shanghai 200131, People’s Republic of China
| |
Collapse
|