1
|
Zhang Z, Song Q, Zhao Z, Chang K, Shu P, Wang J, Yan H, Zhang Y. Cosmetically Approved Short-Chain Alcohol/Triethyl Citrate/Water Surfactant-Free Microemulsions and Potential Application to Transdermal Penetration of α-Arbutin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11011-11022. [PMID: 38739267 DOI: 10.1021/acs.langmuir.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Surfactant-free microemulsions (SFMEs) exhibited remarkable advantages and potential, attributed to their similarity to traditional surfactant-based microemulsions and the absence of surfactants. Herein, a novel SFME was developed utilizing cosmetically approved materials, such as short-chain alcohol as an amphi-solvent, triethyl citrate (TEC) as the nonpolar phase, and water as the polar phase. 1,2-Pentanediol (PtDO)/TEC/water combination can form the largest monophasic zone, accounting for ∼74% of the total phase diagram area, due to an optimal hydrophilic (water)-lipophilic (TEC) balance. Comparable to surfactant-based microemulsion, PtDO/TEC/water SFME can also be categorized into three types: water-in-oil, discontinuous, and oil-in-water. As TEC or water is increased, or PtDO is decreased, the nanoaggregates in PtDO/TEC/water SFME grow from <5 nm to tens of nanometers. The addition of α-arbutin (ABN) does not disrupt PtDO/TEC/water SFME, but rather enhances its formation, resulting in a larger monophasic area and consistent size (2.8-3.8 nm) through participating in interface assembly. Furthermore, ABN-loaded PtDO/TEC/water SFME exhibits remarkable resistance to dilution, exceptional stability, and minimal irritation. Notably, PtDO/TEC/water SFME significantly boosts ABN's solubility in water by 2 times, its percutaneous penetration rate by 3-4 times, and enables a slow-release DPPH• radical scavenging effect. This SFME serves as a safe and cosmetically suitable nanoplatform for the delivery of bioactive substances.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Qingle Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China
| | - Zhen Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Kuan Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Peng Shu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
2
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
3
|
Zhang Y, Mu M, Zhou Y, Xie H, Zhao S. Redox-responsive microemulsion: Fabrication and application to curcumin encapsulation. J Colloid Interface Sci 2023; 647:384-394. [PMID: 37269735 DOI: 10.1016/j.jcis.2023.05.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
HYPOTHESIS Stimulus-responsive microemulsions have aroused significant attention because of their versatile and reversible switchability between stable and unstable states. However, most stimuli-responsive microemulsions are based on stimuli-responsive surfactants. We posit that the change in the hydrophilicity of a selenium-containing alcohol triggered by a mild redox reaction could also influence the stability of microemulsions and provide a new nanoplatform for the delivery of bioactive substances. EXPERIMENTS A selenium-containing diol (3,3'-selenobis(propan-1-ol), PSeP) was designed and used as a co-surfactant in a microemulsion with ethoxylated hydrogenated castor oil (HCO40), diethylene glycol monohexyl ether (DGME), 2-n-octyl-1-dodecanol (ODD) and water. The redox-induced transition in PSeP was characterized by 1H NMR, 77Se NMR, and MS. The redox-responsiveness of the ODD/HCO40/DGME/PSeP/water microemulsion was investigated through determination of a pseudo-ternary phase diagram, analysis by dynamic light scattering, and electrical conductivity, and its encapsulation performance was evaluated by determination of the solubility, stability, antioxidant activity, and skin penetrability of encapsulated curcumin. FINDINGS The redox conversion of PSeP enabled efficient switching of ODD/HCO40/DGME/PSeP/water microemulsions. Addition of oxidant (H2O2), oxidized PSeP into more hydrophilic PSeP-Ox (selenoxide), disrupting the emulsifying capacity of the combination of HCO40/DGME/PSeP, markedly reducing the monophasic microemulsion region in the phase diagram, and inducing phase separation in some formulations. Addition of reductant (N2H4·H2O), reduced PSeP-Ox and restored the emulsifying capacity of the combination of HCO40/DGME/PSeP. In addition, PSeP-based microemulsions can significantly enhance the solubility in oil (by 23 times), stability, antioxidant capacity (DPPH∙ radical scavenging by 91.74 %), and skin penetrability of curcumin, showing clear potential for encapsulation and delivery of curcumin and other bioactive substances.
Collapse
Affiliation(s)
- Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Green Cleaning Technology and Detergents of Zhejiang Province, Hangzhou 310056, PR China.
| | - Meng Mu
- Petroleum Engineering Technology Research Institute of Shengli Oilfield, SINOPEC, Dongying, Shandong 257067, China
| | - Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Huan Xie
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shanjuan Zhao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
4
|
Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Ionic liquids are a family of liquids that are composed entirely of ions and usually have melting points lower than 100 °C. Extensive research, along with the ever-growing interest of the scientific community, allowed for the development of a multitude of ionic liquids with low melting points. Such compounds are considered neoteric materials as well as ideal, custom-made solvents for a variety of different chemical transformations. In this regard, the importance of phase transfer catalysis is evident in a diversity of substrates and reactions. The use of phase transfer catalysts allows the reaction to proceed, facilitating the transfer of otherwise insoluble reactants to the desired phase. Recent scientific advances led to the emergence of ionic liquids, which are excellent candidates as phase transfer catalysts. The inherent fine-tuning capability of these molecules, along with the potential of phase transfer catalytic reactions, epitomize the sustainable aspect of this field of research. Herein, a cohesive report of such applications will be presented, including the period from the last decade of the 20th century up to date.
Collapse
|
5
|
Supported Noyori-Ikariya catalysts for asymmetric transfer hydrogenations and related tandem reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Wang Z, Song H. Phase behaviors, properties and potential application of temperature-responsive microemulsions based on tropine ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Ru-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes via P-Chiral Monophosphorous Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123898. [PMID: 35745017 PMCID: PMC9231018 DOI: 10.3390/molecules27123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Chiral alcohols are among the most widely applied in fine chemicals, pharmaceuticals and agrochemicals. Herein, the Ru-monophosphine catalyst formed in situ was found to promote an enantioselective addition of aliphatic aldehydes with arylboronic acids, delivering the chiral alcohols in excellent yields and enantioselectivities and exhibiting a broad scope of aliphatic aldehydes and arylboronic acids. The enantioselectivities are highly dependent on the monophosphorous ligands. The utility of this asymmetric synthetic method was showcased by a large-scale transformation.
Collapse
|
8
|
|
9
|
Kirchhof M, Abitaev K, Abouhaileh A, Gugeler K, Frey W, Zens A, Kästner J, Sottmann T, Laschat S. Interplay of Polarity and Confinement in Asymmetric Catalysis with Chiral Rh Diene Complexes in Microemulsions. Chemistry 2021; 27:16853-16870. [PMID: 34664324 PMCID: PMC9299057 DOI: 10.1002/chem.202102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Microemulsions provide a unique opportunity to tailor the polarity and liquid confinement in asymmetric catalysis via nanoscale polar and nonpolar domains separated by a surfactant film. For chiral diene Rh complexes, the influence of counterion and surfactant film on the catalytic activity and enantioselectivity remained elusive. To explore this issue chiral norbornadiene Rh(X) complexes (X=OTf, OTs, OAc, PO2 F2 ) were synthesized and characterized by X-ray crystallography and theoretical calculations. These complexes were used in Rh-catalyzed 1,2-additions of phenylboroxine to N-tosylimine in microemulsions stabilized either exclusively by n-octyl-β-D-glucopyranoside (C8 G1 ) or a C8 G1 -film doped with anionic or cationic surfactants (AOT, SDS and DTAB). The Rh(OAc) complex showed the largest dependence on the composition of the microemulsion, yielding up to 59 % (90 %ee) for the surfactant film doped with 5 wt% of AOT as compared to 52 % (58 %ee) for neat C8 G1 at constant surfactant concentration. Larger domains, determined by SAXS analysis, enabled further increase in yield and selectivity while the reaction rate almost remained constant according to kinetic studies.
Collapse
Affiliation(s)
- Manuel Kirchhof
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Karina Abitaev
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Abdulwahab Abouhaileh
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Katrin Gugeler
- Institut für Theoretische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Anna Zens
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Johannes Kästner
- Institut für Theoretische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Thomas Sottmann
- Institut für Physikalische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Laschat
- Institut für Organische ChemieUniversität StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
10
|
Zhou Y, He S, Li H, Zhang Y. CO 2 and Temperature Control over Nanoaggregates in Surfactant-Free Microemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1983-1990. [PMID: 33512168 DOI: 10.1021/acs.langmuir.0c03527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Smart microemulsions (MEs) recently have attracted significant interests. However, MEs, especially surfactant-free MEs (SFMEs) that respond to more than one stimulus, are rarely reported to date. Here, we reported the first example of dual-responsive SFME in which a CO2-sensitive hydroxyethylamine was used as an amphisolvent. This SFME was investigated utilizing ternary phase diagram, dynamic light scattering, and UV-visible spectrum techniques. It was found that three hydroxyethylamines could stabilize the octanol-water mixture to form transparent and isotropic SFMEs including nanoaggregates-rich pre-ouzo zone, regardless of the number of the hydroxyl group. Among them, 2-(dimethyl amino) ethanol (DMEA)-based SFME possesses the largest single-phase region and most sensitive to CO2 and the changes in temperature. With bubbling of CO2/N2 or decreasing/increasing temperature, both the single-phase region and pre-ouzo zone reversibly shrink and expand, as well as with breathing. However, CO2/N2-induced change is more significant than that induced by temperature. The former is mainly ascribed to the reversible protonation and deprotonation of DMEA, while the latter is generally interpreted as the effects of temperature on hydrogen bond interaction. Note that CO2 leads to a thorough demusification from Winsor IV ME to oil-rich and water-rich two phases without nanoaggregates, while cooling only causes to a particular phase separation, producing two new MEs phases, not typical Winsor I or II MEs. Such a unique dual-responsive SFME can not only be applied in the remediation of contaminated soil, drug delivery, and nanoparticles preparation but also opens a new door to switchable emulsion.
Collapse
Affiliation(s)
- Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Huanhuan Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
11
|
|