1
|
Sorroche A, Reboiro F, Monge M, López-de-Luzuriaga JM. Recent Trends in Group 11 Hydrogen Bonding. Chempluschem 2024; 89:e202400273. [PMID: 38764413 DOI: 10.1002/cplu.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Conventional hydrogen bonding (H-bonding) has been extensively studied in organic and biological systems. However, its role in transition metal chemistry, particularly with Group 11 metals (i. e. Cu, Ag, Au) as hydrogen bond acceptors, remains relatively unexplored. Through a combination of experimental techniques, such as Nuclear Magnetic Resonance (NMR), Infrared spectroscopy (IR), X-Ray Diffraction (XRD), and computational calculations, several aspects of H-bonding interactions with Group 11 metals are examined, shedding light on its impact on structural motifs and reactivity. These include bond strengths, geometries, and effects on electronic structures. Understanding the intricacies of hydrogen bonding within transition metal chemistry holds promise for various applications, including catalytic transformations, the construction of molecular assemblies, synthesis of complexes displaying anticancer activities, or luminescence applications (e. g. Thermally Activated Delayed Fluorescence, TADF). This review encompasses the most significant recent advances, challenges, and future prospects in this emerging field.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Félix Reboiro
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José María López-de-Luzuriaga
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
2
|
Sorroche A, Moreno S, Elena Olmos M, Monge M, López-de-Luzuriaga JM. Deciphering the Primary Role of Au⋅⋅⋅H-X Hydrogen Bonding in Gold Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310314. [PMID: 37615519 DOI: 10.1002/anie.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Au⋅⋅⋅H-X (X=N or C) hydrogen bonding is gaining increasing interest, both in the study of its intrinsic nature and in their operability in different fields. While the role of these interactions has been studied in the stabilization of gold(I) complexes, their role during the minimum free energy reaction pathway of a given catalytic process remains unexplored. We report herein that complex [Au(C≡CPh)(pip)] (pip=piperidine) catalyses the A3 -coupling reaction for the synthesis of propargylamines, thanks to the ability of Au(I) to promote weak hydrogen bonding interactions with the reactants along the free energy profile. Density Functional Theory (DFT) calculations show that these Au⋅⋅⋅H-X interactions play a directing role in the catalysed A3 -coupling. Topological non-covalent interactions (NCI), interaction region indicator (IRI) and quantum theory of atoms in molecules (QTAIM) analysis in real space of the electron density provide a description of these interactions accurately.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Sonia Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - M Elena Olmos
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José M López-de-Luzuriaga
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
3
|
Sahu P, Jena AB, Barik S, Kisan HK, Isab AA, Dandapat J, Dinda J. Gold(III) assisted C-N bond dissociation; Synthesis, structure, photoluminescence, and pharmacokinetic studies of 1,10/- phenanthroline-gold(III)-N-heterocyclic carbene. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
4
|
McCallum T. Heart of gold: enabling ligands for oxidative addition of haloorganics in Au(I)/Au(III) catalysed cross-coupling reactions. Org Biomol Chem 2023; 21:1629-1646. [PMID: 36727215 DOI: 10.1039/d3ob00002h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The field of Au-catalysis has been an area rich with new discoveries due to the unique properties of the lustrous element. In the past decade, developments in Au(I)/Au(III) cross-coupling methodology have been made possible with the use of external oxidants that facilitate the challenging oxidation of Au(I) to Au(III) in a stable and catalytically competent fashion. Until recently, Au-chemistry was not known to undergo catalytic transformations that feature oxidative addition of haloarenes like those that were made famous by transition metals such as Pd and Ni. The discovery that ligand modification could facilitate the oxidative addition of Au(I) with haloorganics to provide Au(III) intermediates that are competent in other areas of catalysis (i.e. Lewis acid catalysis) has revolutionized this field and has led to the invention of new cross-coupling methodology. The recent advances at the leading edge in the emerging field of Au(I)/Au(III) catalysis under redox-neutral conditions are highlighted.
Collapse
Affiliation(s)
- Terry McCallum
- The Canadian Bank Note Company, Ottawa, Ontario, Canada.
| |
Collapse
|
5
|
Zheng C, Tang Y, Yu B. Tri( N-carbazolyl)phosphine Gold(I) Complexes: Structural and Catalytic Activity Studies. Inorg Chem 2022; 61:16874-16886. [PMID: 36219576 DOI: 10.1021/acs.inorgchem.2c02902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Twelve tri(N-carbazolyl)phosphine gold(I) complexes, bearing both protonated and deuterated aryl phosphorous triamide-type ligands, have been synthesized and characterized. An elusive Au-H(D) interaction between the H(D) atoms of the tri(N-carbazolyl)phosphine ligand at the H-1(D-1) position of the carbazolyl ring and the central gold atom was observed. Complexes 5(H)/5(D) bearing the dibrominated tri(N-carbazolyl)phosphine ligand exhibit isotopic polymorphism, in which two dramatically different crystal-packing modes between the protonated and deuterated forms occur. The catalytic potential of these complexes has been showcased in the gold(I)-catalyzed glycosylation with glycosyl o-alkynylbenzoates as donors, with TON being up to 27 000.
Collapse
Affiliation(s)
- Chang Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Feng X, Yang J, Miao J, Zhong C, Yin X, Li N, Wu C, Zhang Q, Chen Y, Li K, Yang C. Au⋅⋅⋅H−C Interactions Support a Robust Thermally Activated Delayed Fluorescence (TADF) Gold(I) Complex for OLEDs with Little Efficiency Roll‐Off and Good Stability. Angew Chem Int Ed Engl 2022; 61:e202209451. [DOI: 10.1002/anie.202209451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xingyu Feng
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Jian‐Gong Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Chao Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Qizheng Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
7
|
Feng X, Yang JG, Miao J, Zhong C, Yin X, Li N, Wu C, Zhang Q, Chen Y, Li K, Yang C. Au···H–C Interactions‐supported Robust TADF Gold(I) Complex for OLEDs with Extremely Small Efficiency Roll‐off and Good Stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xingyu Feng
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Jian-Gong Yang
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Jingsheng Miao
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Cheng Zhong
- Wuhan University Department of Chemistry CHINA
| | - Xiaojun Yin
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Nengquan Li
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Chao Wu
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Qizheng Zhang
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Yong Chen
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials Beijing CHINA
| | - Kai Li
- Shenzhen University College of Materials Science and Engineering Xueyuan Blvd. 1066 518055 CHINA
| | - Chuluo Yang
- Shenzhen University College of Materials Science and Engineering Xueyuan Avenue 518000 Shenzhen CHINA
| |
Collapse
|
8
|
Maity L, Barik S, Biswas R, Natarajan R, Dinda J. N‐Heterocyclic Carbene (NHC) Boosted Photoluminescence; Synthesis, Structures and Photophysical Properties of bpy/phen‐Au (III)‐NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI Bhubaneswar Odisha India
| | - Raju Biswas
- CSIR Indian Institute of Chemical Biology Kolkata West Bengal India
| | | | - Joydev Dinda
- Department of Chemistry Utkal University Bhubaneswar Odisha India
| |
Collapse
|
9
|
Adinarayana M, Siddhant K, Vaddamanu M, Sathyanarayana A, Rengan AK, Hisano K, Tsutsumi O, Prabu Sankar G. A Simple and Efficient Approach for the Clickability of
Super‐Bulky
Aryl Azides. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mannem Adinarayana
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana INDIA
| | - Kumar Siddhant
- Department of Applied Chemistry Ritsumeikan University Kusatsu JAPAN
| | - Moulali Vaddamanu
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana INDIA
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad INDIA
| | - Kyohei Hisano
- Department of Applied Chemistry Ritsumeikan University Kusatsu JAPAN
| | - Osamu Tsutsumi
- Department of Applied Chemistry Ritsumeikan University Kusatsu JAPAN
| | - Ganesan Prabu Sankar
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi Telangana INDIA
| |
Collapse
|
10
|
Narayana MA, Vaddamanu M, Sathyanarayana A, Siddhant K, Sugiyama S, Ozaki K, Rengan AK, Velappan K, Hisano K, Tsutsumi O, Prabusankar G. A gold(I) 1,2,3-triazolylidene complex featuring the interaction between gold and methine hydrogen. Dalton Trans 2021; 50:16514-16518. [PMID: 34761758 DOI: 10.1039/d1dt02827h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mesoionic N-heterocyclic carbene-gold(I) complex with a unique Au⋯H-C(methine) intramolecular hydrogen bonding interaction has been investigated in the solid state. The structure of this new neutral gold(I)-carbene was characterized by FT-IR and NMR spectroscopy, TGA, and X-ray diffraction techniques. Density functional theory (DFT) and atoms-in-molecule (AIM) analysis revealed that the gold-hydrogen bonding situation is more favored. Besides, the photophysical properties of the gold(I) complex were also investigated.
Collapse
Affiliation(s)
- Mannem Adi Narayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, India-502 284.
| | - Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad, India-502 284.
| | | | - Kumar Siddhant
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Shohei Sugiyama
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Ozaki
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, India-502 284
| | - Kavitha Velappan
- DAV-IITH, Indian Institute of Technology Hyderabad, India-502 284
| | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, India-502 284.
| |
Collapse
|
11
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H-C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021; 60:21014-21024. [PMID: 34313367 PMCID: PMC8518757 DOI: 10.1002/anie.202108581] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/15/2023]
Abstract
Secondary ligand-metal interactions are decisive in many catalytic transformations. While arene-gold interactions have repeatedly been reported as critical structural feature in many high-performance gold catalysts, we herein report that these interactions can also be replaced by Au⋅⋅⋅H-C hydrogen bonds without suffering any reduction in catalytic performance. Systematic experimental and computational studies on a series of ylide-substituted phosphines featuring either a PPh3 (Ph YPhos) or PCy3 (Cy YPhos) moiety showed that the arene-gold interaction in the aryl-substituted compounds is efficiently compensated by the formation of Au⋅⋅⋅H-C hydrogen bonds. The strongest interaction is found with the C-H moiety next to the onium center, which due to the polarization results in remarkably strong interactions with the shortest Au⋅⋅⋅H-C hydrogen bonds reported to date. Calorimetric studies on the formation of the gold complexes further confirmed that the Ph YPhos and Cy YPhos ligands form similarly stable complexes. Consequently, both ligands showed the same catalytic performance in the hydroamination, hydrophenoxylation and hydrocarboxylation of alkynes, thus demonstrating that Au⋅⋅⋅H-C hydrogen bonds are equally suited for the generation of highly effective gold catalysts than gold-arene interactions. The generality of this observation was confirmed by a comparative study between a biaryl phosphine ligand and its cyclohexyl-substituted derivative, which again showed identical catalytic performance. These observations clearly support Au⋅⋅⋅H-C hydrogen bonds as fundamental secondary interactions in gold catalysts, thus further increasing the number of design elements that can be used for future catalyst construction.
Collapse
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Julian Löffler
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
12
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Julian Löffler
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
13
|
|
14
|
Lei Z, Pei XL, Ube H, Shionoya M. Reconstituting C-Centered Hexagold(I) Clusters with N-Heterocyclic Carbene Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
15
|
Vaddamanu M, Sathyanarayana A, Masaya Y, Sugiyama S, Kazuhisa O, Velappan K, Nandeshwar M, Hisano K, Tsutsumi O, Prabusankar G. Acridine N-Heterocyclic Carbene Gold(I) Compounds: Tuning from Yellow to Blue Luminescence. Chem Asian J 2021; 16:521-529. [PMID: 33442961 DOI: 10.1002/asia.202001380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Indexed: 12/18/2022]
Abstract
The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [(L1 )Au(Cl)] (1), [(L2 )Au(Cl)] (2), and [(L3 )Au(Cl)] (3) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N'-(n-butyl)-imidazolium chloride, (L1 .HCl)], [N-(9-acridinyl)-N'-(n-pentyl)-imidazolium chloride, (L2 .HCl)] and [N-(9-acridinyl)-N'-(n-hexyl)-imidazolium chloride, (L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1-3 with n-alkyl substituents is explored. The molecules 1-3 depicted blue emission in the solution state, while the yellow emission (for 1), greenish-yellow emission (for 2), and blue emission (for 3) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.
Collapse
Affiliation(s)
- Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| | - Arruri Sathyanarayana
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Yamane Masaya
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Shohei Sugiyama
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Ozaki Kazuhisa
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | | | - Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| |
Collapse
|
16
|
Mannarsamy M, Prabusankar G. Rare proximity enforced copper hydrogen interactions in copper( i)-chalcogenones. NEW J CHEM 2021. [DOI: 10.1039/d1nj00397f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homoleptic tetra-coordinated copper(i)-chalcogenone complexes have been reported with rare proximity-enforced intramolecular Cu⋯H–C(sp3) hydrogen bonding interactions.
Collapse
|
17
|
Lin X, Mo Y. Resonance-Assisted but Antielectrostatic Intramolecular Au···H–O Hydrogen Bonding in Gold(I) Complexes: A Computational Verification. Inorg Chem 2020; 60:460-467. [DOI: 10.1021/acs.inorgchem.0c03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuhui Lin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
18
|
Zhan L, Zhang G, Wang J, Zhang J. Syntheses of tetrahydroquinoline-based chiral carbene precursors and the related chiral NHC–Au(i) complex. RSC Adv 2020; 10:35253-35256. [PMID: 35515693 PMCID: PMC9056819 DOI: 10.1039/d0ra07271k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
The facile synthesis of tetrahydroquinoline-based chiral carbene precursors is reported. A rare Au⋯H–C(sp3) interaction between Au(i) and the hydrogen atom was observed in the crystal structure of a related NHC–gold complex.
Collapse
Affiliation(s)
- Licheng Zhan
- Key Laboratory for Advanced Materials
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Gengtao Zhang
- Key Laboratory for Advanced Materials
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jiwei Wang
- Key Laboratory for Advanced Materials
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jun Zhang
- Key Laboratory for Advanced Materials
- Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| |
Collapse
|