1
|
Romano C, Martin R. Ni-catalysed remote C(sp 3)-H functionalization using chain-walking strategies. Nat Rev Chem 2024; 8:833-850. [PMID: 39354168 DOI: 10.1038/s41570-024-00649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 10/03/2024]
Abstract
The dynamic translocation of a metal catalyst along an alkyl side chain - often coined as 'chain-walking' - has opened new retrosynthetic possibilities that enable functionalization at unactivated C(sp3)-H sites. The use of nickel complexes in chain-walking strategies has recently gained considerable momentum owing to their versatility for forging sp3 architectures and their redox promiscuity that facilitates both one-electron or two-electron reaction manifolds. This Review discusses the relevance and impact that these processes might have in synthetic endeavours, including mechanistic considerations when appropriate. Particular emphasis is given to the latest discoveries that leverage the potential of Ni-catalysed chain-walking scenarios for tackling transformations that would otherwise be difficult to accomplish, including the merger of chain-walking with other new approaches such as photoredox catalysis or electrochemical activation.
Collapse
Affiliation(s)
- Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Wang Y, He Y, Zhu S. Nickel-Catalyzed Migratory Cross-Coupling Reactions: New Opportunities for Selective C-H Functionalization. Acc Chem Res 2023; 56:3475-3491. [PMID: 37971926 DOI: 10.1021/acs.accounts.3c00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ConspectusMigratory cross-coupling via metal migration is a process of significant academic and industrial interest. It provides an attractive alternative for the selective installation of a functional group at remote C-H positions from simple precursors, thus enabling the direct synthesis of challenging structures not accessible with traditional cross-coupling. In particular, with the merger of 1,n-Ni/H shift and cross-coupling of nickel, the Ni-catalyzed migratory functionalization of simple precursors has undergone particularly intense development and emerged as a valuable field of research in the past few years. This Account will outline the recent progress made in this arena in terms of migration-functionalization modes, diverse functionalizations, and strategies for regio- and stereocontrol. Mechanistic studies and synthetic applications are also discussed.In detail, we systematically categorize our work into two parts based on the migration modes. In the first part, a platform is created for Ni-catalyzed migratory sp3 C-H functionalization of alkenes or alkyl halides via iterative 1,2-Ni/H shift-selective cross-coupling. The key reactive Ni(II)H species for chain-walking could be generated in situ either in a polarity-reversed fashion relying on stoichiometric reductants (X-Ni(II)-H) or in a redox-neutral fashion with the participation of nucleophilic coupling partners (FG-Ni(II)-H). One significant advantage associated with the polarity-reversed NiH system is the use of relatively stable, abundant, and safe olefin surrogates or alkyl halides instead of the sensitive organometallics required in traditional cross-coupling reactions. Another advantage is that diverse functionalizations, including carbonation and more challenging amination and thiolation could be smoothly achieved with suitable electrophiles or their precursors. Finally, to address the challenging multifaceted selectivity and reactivity issues in asymmetric migratory cross-coupling reactions, we have developed a feasible ligand relay catalytic strategy. In this dynamic ligand exchange process, one ligand promotes rapid migration while the other promotes highly regio- and stereoselective coupling. This innovative strategy overcomes the formidable challenge stemming from the difficulty of designing a single ligand to efficiently promote both steps of chain-walking and asymmetric coupling. In the second part, a new platform for Ni-catalyzed migratory sp2 C-H functionalization via 1,4-Ni/H shift-selective cross-coupling has been reported. Starting from readily available aryl or vinyl coupling partners, the in situ-generated aryl- or vinylnickel(II) species could undergo a rapid and reversible 1,4-Ni/H shift along an sp2 backbone, and subsequent selective coupling with various coupling partners would allow regio- and stereoselective access to diverse 1,4-migratory functionalization products. The key to success was the discovery of an appropriate ligand to efficiently promote both migration and subsequent selective cross-coupling. A vinyl-to-aryl 1,4-Ni/H shift successfully enables the modular ipso/ortho difunctionalization of aryl coupling partners, while an aryl-to-vinyl 1,4-Ni/H shift enables regio- and stereoselective access to functionalized trisubstituted alkenes.We hope that this Account will inspire broad interest and future development of migratory cross-coupling reactions. We strongly believe that continued efforts in this fascinating field will overcome many of the remaining challenges, including cutting-edge ligand/catalyst design to enhance reactivity and selectivity, conceptually new migration modes for additional transformations, and in-depth mechanistic studies for rational reaction design.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuli He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Ma S, Fan H, Day CS, Xi Y, Hartwig JF. Remote Hydroamination of Disubstituted Alkenes by a Combination of Isomerization and Regioselective N-H Addition. J Am Chem Soc 2023; 145:10.1021/jacs.2c13054. [PMID: 36780535 PMCID: PMC11620753 DOI: 10.1021/jacs.2c13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Remote hydrofunctionalizations of alkenes incorporate functional groups distal to existing carbon-carbon double bonds. While remote carbonylations are well-known, remote hydrofunctionalizations are most common for addition of relatively nonpolar B-H, Si-H, and C-H bonds with alkenes. We report a system for the remote hydroamination of disubstituted alkenes to functionalize an alkyl chain selectively at the subterminal, unactivated, methylene position. Critical to the high regioselectivity and reaction rates are the electronic properties of the substituent on the amine and the development of the ligand DIP-Ad-SEGPHOS by evaluating the steric and electronic effects of ligand modules on reactivity and selectivity. The remote hydroamination is compatible with a broad scope of alkenes and aminopyridines and enables the regioconvergent synthesis of amines from an isomeric mixture of alkenes. The products can be derivatized by nucleophilic aromatic substitution on the amino substituent with a variety of nucleophiles.
Collapse
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haoyu Fan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Craig S Day
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yumeng Xi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Li X, Yang X, Chen P, Liu G. Palladium-Catalyzed Remote Hydro-Oxygenation of Internal Alkenes: An Efficient Access to Primary Alcohols. J Am Chem Soc 2022; 144:22877-22883. [PMID: 36508607 DOI: 10.1021/jacs.2c11428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a general method for the synthesis of alcohols, the direct oxygenation of alkenes is difficult to afford linear alcohols. Herein, we communicate the remote hydro-oxygenation of alkenes under palladium catalysis, in which both terminal and internal alkenes are suitable to yield the corresponding linear alcohols efficiently. A compatible SelectFluor/silane redox system plays an essential role for the excellent chemo- and regioselectivities. The reaction features a broad substrate scope and excellent functional group compatibility.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xintuo Yang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Wang Y, He Y, Zhu S. NiH-Catalyzed Functionalization of Remote and Proximal Olefins: New Reactions and Innovative Strategies. Acc Chem Res 2022; 55:3519-3536. [PMID: 36350093 DOI: 10.1021/acs.accounts.2c00628] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transition metal hydride catalyzed functionalization of remote and proximal olefins has many advantages over conventional cross-coupling reactions. It avoids the separate, prior generation of stoichiometric amounts of organometallic reagents and the use of preformed organometallic reagents, which are sometimes hard to access and may compromise functional group compatibility. The migratory insertion of metal hydride complexes generated in situ into readily available alkene starting materials, the hydrometalation process, provides an attractive and straightforward route to alkyl metal intermediates, which can undergo a variety of sequential cross-coupling reactions. In particular, with the synergistic combination of chain-walking and cross-coupling chemistry of nickel, NiH-catalyzed functionalization of remote and proximal olefins has undergone particularly intense development in the past few years. This Account aims to chronicle the progress made in this arena in terms of activation modes, diverse functionalizations, and chemo-, regio-, and enantioselectivity.We first provide a brief introduction to the general reaction mechanisms. Taking remote hydroarylation as an example, the four oxidation states of Ni have allowed us to develop two different reaction strategies to form the final product: a Ni(I)-H/X-Ni(II)-H platform that relies on stoichiometric reductants and a Ni(I/II/III) cycle and a redox-neutral functional group or FG-Ni(II)-H platform that reacts with an alkene substrate and forms the migratory products via a Ni(0/II) pathway. We also demonstrate that diverse functionalization, including general C-C bond-forming reactions and the more challenging C-N/C-S bond-forming reactions could be realized. Moreover, the employment of appropriate chiral ligands has allowed us to successfully realize the corresponding asymmetric hydrofunctionalization reactions of olefins, including hydroalkylation, hydroarylation, hydroalkenylation, hydroalkynylation, and hydroamination. Interestingly, the enantio-determining step could be enantioselective hydronickelation, selective oxidative addition, or selective reductive elimination. To realize more challenging asymmetric migratory hydrofunctionalization, we have developed a general ligand relay catalytic strategy with a combination of two simple ligands, the first for chain-walking and the second for asymmetric coupling. This novel strategy avoids the design of a single, possibly structurally complex chiral ligand to promote both steps of chain-walking and asymmetric coupling. In addition, the success of multicomponent hydrofunctionalization provides a convenient approach to gain simple access to complex molecules. Finally, alkyl halides could be used as olefin precursors to undergo a variety of reductive migratory cross-electrophile coupling reactions. Applications of these remote hydrofunctionalization reactions are also discussed. We hope this Account will inspire future development in the field to overcome key challenges, including conceptually new catalytic strategies, development of high-performance systems with enhanced reactivity and selectivity, cutting-edge catalyst design, and further mechanistic studies.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuli He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
6
|
Yang PF, Shu W. Orthogonal Access to α‐/β‐Branched/Linear Aliphatic Amines by Catalyst‐Tuned Regiodivergent Hydroalkylations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peng-Fei Yang
- Southern University of Science and Technology Chemistry CHINA
| | - Wei Shu
- Southern University of Science and Technology Chemistry Room 5-505, 1088 Xueyuan Road 518055 Shenzhen CHINA
| |
Collapse
|
7
|
Yang PF, Shu W. Orthogonal Access to α-/β-Branched/Linear Aliphatic Amines by Catalyst-Tuned Regiodivergent Hydroalkylations. Angew Chem Int Ed Engl 2022; 61:e202208018. [PMID: 35726965 DOI: 10.1002/anie.202208018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 12/19/2022]
Abstract
Linear, α-branched, and β-branched aliphatic amines are widespread in pharmaceuticals, agrochemicals, and fine chemicals. Thus, the development of direct and efficient methods to these structures in a tunable manner is highly desirable yet challenging. Herein, a catalyst-controlled synthesis of α-branched, β-branched and linear aliphatic amines from Ni/Co-catalyzed regio- and site-selective hydroalkylations of alkenyl amines with alkyl halides is developed. This catalytic protocol features the reliable prediction and control of the coupling position of alkylation to provide orthogonal access to α-branched, β-branched and linear alkyl amines from identical starting materials. This platform unlocks orthogonal reactivity and selectivity of nickel hydride and cobalt hydride chemistry to catalytically repurpose three types of alkyl amines under mild conditions.
Collapse
Affiliation(s)
- Peng-Fei Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, P. R. China
| |
Collapse
|
8
|
Kawamura KE, Chang ASM, Martin DJ, Smith HM, Morris PT, Cook AK. Modular Ni(0)/Silane Catalytic System for the Isomerization of Alkenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kiana E. Kawamura
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Alison Sy-min Chang
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Daryl J. Martin
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Haley M. Smith
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Parker T. Morris
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| | - Amanda K. Cook
- Department of Chemistry and Biochemistry, University of Oregon, 1585 13th Avenue, Eugene, Oregon 97403, United States
| |
Collapse
|
9
|
Ghosh T, Bhakta S. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the recent advances in the field of nickel-catalyzed hydroarylation reaction of alkenes, alkynes, and arenes. All reactions proceeded either through internal hydride transfer or in presence of...
Collapse
|
10
|
Du B, Ouyang Y, Chen Q, Yu WY. Thioether-Directed NiH-Catalyzed Remote γ-C(sp 3)-H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J Am Chem Soc 2021; 143:14962-14968. [PMID: 34496211 DOI: 10.1021/jacs.1c05834] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C-H bond amidation of unactivated alkenes. Due to the preference for five-membered nickelacycle formation, the chain-walking isomerization initiated by the NiH insertion to an alkene can be terminated at the γ-methylene site remote from the alkene moiety. By employing 2,9-dibutyl-1,10-phenanthroline (L4) as the ligand and dioxazolones as the reagent, the amidation occurs at the γ-C(sp3)-H bonds to afford the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).
Collapse
Affiliation(s)
- Bingnan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yuxin Ouyang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qishu Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|