1
|
Xu L, Zhang F, Wang YE, Bai C, Xiong D, Mao J. Cobalt-Catalyzed Three-Component Alkyl Arylation of Acrylates with Alkyl Iodides and Aryl Grignard Reagents. Org Lett 2024; 26:9288-9293. [PMID: 39431957 DOI: 10.1021/acs.orglett.4c03453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A highly regioselective cobalt-catalyzed three-component alkyl arylation of acrylates with alkyl iodides and aryl Grignard reagents has been established. The reaction efficiently provides an alternative strategy for the construction of α-aryl esters with a broad substrate scope and good yields under mild conditions. The practical applicability of this protocol is shown by the scaled-up reaction and further transformations of the products. In addition, the preliminary mechanistic explorations demonstrated that the alkyl radicals generated by the efficient cobalt catalysis are instantaneously added to the acrylates to finally afford the desired products.
Collapse
Affiliation(s)
- Lei Xu
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Fan Zhang
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Congcong Bai
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
2
|
Chang Z, Zhang X, Lv H, Sun H, Lian Z. Three-Component Radical Cross-Coupling: Asymmetric Vicinal Sulfonyl-Esterification of Alkenes Involving Sulfur Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309069. [PMID: 38532287 PMCID: PMC11186061 DOI: 10.1002/advs.202309069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Indexed: 03/28/2024]
Abstract
A novel catalytic system for radical cross-coupling reactions based on copper and chiral Pyridyl-bis(imidazole) (PyBim) ligands is described. It overcomes the challenges of chemoselectivity and enantioselectivity, achieving a highly enantioselective vicinal sulfonyl-esterification reaction of alkenes involving sulfur dioxide. This strategy involves the use of earth-abundant metal catalyst, mild reaction conditions, a broad range of substrates (84 examples), high yields (up to 97% yield), and exceptional control over enantioselectivity. The reaction system is compatible with different types of radical precursors, including O-acylhydroxylamines, cycloketone oxime esters, aryldiazonium salts, and drug molecules. Chiral ligand PyBim is identified as particularly effective in achieving the desired high enantioselectivity. Mechanistic studies reveal that copper/PyBim system plays a vital role in C─O coupling, employing an outer-sphere model. In addition, the side arm effect of ligand is observed.
Collapse
Affiliation(s)
- Zhiqian Chang
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xuemei Zhang
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haiping Lv
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haotian Sun
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhong Lian
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
3
|
Wang J, Shen X, Chen X, Bao Y, He J, Lu Z. Cobalt-Catalyzed Enantioconvergent Negishi Cross-Coupling of α-Bromoketones. J Am Chem Soc 2023. [PMID: 37906733 DOI: 10.1021/jacs.3c09807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Cobalt-catalyzed enantioconvergent cross-coupling of α-bromoketones with aryl zinc reagents is achieved to access chiral ketones bearing α-tertiary stereogenic centers with high enantioselectivities. The more challenging and sterically hindered α-bromoketones bearing a 2-fluorophenyl group or β-secondary and tertiary alkyl chains could also be well-tolerated. Adjusting the electronic effect of chiral unsymmetric N,N,N-tridentate ligands is critical for improving the reactivity and selectivity of this transformation, which is beneficial for further studies of asymmetric 3d metal catalysis via ligand modification. The control experiments and kinetic studies illustrated that the reaction involved radical intermediates and the reductive elimination was a rate-determining step.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
4
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
5
|
Rinu PXT, Philip RM, Anilkumar G. Low-cost transition metal catalysed Negishi coupling: an update. Org Biomol Chem 2023; 21:6438-6455. [PMID: 37522832 DOI: 10.1039/d3ob00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The Negishi coupling is a significant C-C bond-forming reaction to access synthetically valuable organic compounds. In recent years, researchers have developed sustainable first-row transition metal (Fe, Co, Ni and Cu) based complexes in place of the conventional Pd catalyst for this reaction. Several such low-cost metal-based catalysts showed high efficiency and potential application in natural product synthesis. This review focuses on the recent achievements in low-cost transition metal-based Negishi coupling reactions, covering reports from 2016.
Collapse
Affiliation(s)
| | - Rose Mary Philip
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India.
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India.
| |
Collapse
|
6
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
7
|
|
8
|
Liang D, Xiao W, Lakhdar S, Chen J. Construction of axially chiral compounds via catalytic asymmetric radical reaction. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
9
|
Lopez MA, Buss JA, Stahl SS. Cu-Catalyzed Site-Selective Benzylic Chlorination Enabling Net C-H Coupling with Oxidatively Sensitive Nucleophiles. Org Lett 2022; 24:597-601. [PMID: 34965136 PMCID: PMC8830506 DOI: 10.1021/acs.orglett.1c04038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Site-selective chlorination of benzylic C-H bonds is achieved using a CuICl/bis(oxazoline) catalyst with N-fluorobenzenesulfonimide as the oxidant and KCl as a chloride source. This method exhibits higher benzylic selectivity, relative to established chlorination protocols, and is compatible with diverse alkyl arenes. Sequential benzylic C-H chlorination/nucleophilic substitution affords C-O, C-S, and C-N coupling products with oxidatively sensitive coupling partners.
Collapse
Affiliation(s)
- Marco Antonio Lopez
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joshua A. Buss
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | |
Collapse
|