1
|
Ajithkumar VS, Ghanwat PB, Saha S, Pati SK, Sen SS. Stereodivergent sila-germylenation vs. sila-stannylenation of an internal alkyne. Chem Commun (Camb) 2024; 60:9837-9840. [PMID: 39171507 DOI: 10.1039/d4cc02101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report on the insertion of electron deficient alkyne, dimethyl acetylene dicarboxylate (DMAD), into the E-Si bond of hypersilyl tetrylenes, PhC(NtBu)2ESi(SiMe3)3 (E = Ge and Sn), at room temperature. Uniquely, the germylene leads to cis alkenes, while the stannylene gives access to trans alkenes, and the insight into divergent stereoselectivity has been obtained by DFT studies.
Collapse
Affiliation(s)
- V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratiksha B Ghanwat
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sougata Saha
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Ajithkumar VS, Khilari N, Ghanwat PB, Venugopal G, Koley D, Sen SS. Activation of carbon disulfide by a hypersilyl germylene. Dalton Trans 2024; 53:10814-10818. [PMID: 38859708 DOI: 10.1039/d4dt01573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In this work, the insertion of CS2 into the Ge-Si bond of PhC(NtBu)2Ge-Si(SiMe3)3 (1) has been investigated, resulting in the formation of PhC(NtBu)2Ge-C(S)-S-Si(SiMe3)3 (2). Interestingly, the addition of NHC to 2 allows the release of NHC·CS2 with concomitant regeneration of 1. Addition of another equivalent of 1 or an analogous hypersilyl silylene, [PhC(NtBu)2Si-Si(SiMe3)3], to 2 led to the formation of compounds with a GeS (3) or a SiS (4) bond.
Collapse
Affiliation(s)
- V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Nripen Khilari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
| | - Pratiksha B Ghanwat
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Geethu Venugopal
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
3
|
Wang Y, Crumpton AE, Ellwanger MA, McManus C, Aldridge S. Boryl Ancillary Ligands: Influencing Stability and Reactivity of Amidinato-Silanone and Germanone Systems in Ammonia Activation. Angew Chem Int Ed Engl 2024; 63:e202402795. [PMID: 38465783 DOI: 10.1002/anie.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
While the nucleophilic addition of ammonia to ketones is an archetypal reaction in classical organic chemistry, the reactivity of heavier group 14 carbonyl analogues (R2E=O; E=Si, Ge, Sn, or Pb) with NH3 remains sparsely investigated, primarily due to the synthetic difficulties in accessing heavier ketone congeners. Herein, we present a room-temperature stable boryl-substituted amidinato-silanone {(HCDippN)2B}{PhC(tBuN)2}Si=O (Dipp=2,6-iPr2C6H3) (together with its germanone analogue), formed from the corresponding silylene under a N2O atmosphere. This system reacts cleanly with ammonia in 1,2-fashion to give an isolable sila-hemiaminal complex {(HCDippN)2B}{PhC(tBuN)2}Si(OH)(NH2). Quantum chemical calculations reveal that the formation of this sila-hemiaminal is crucially dependent on the nature of the ancillary ligand scaffold. It is facilitated thermodynamically by the hemi-lability of the amidinate ligand (which allows for the formation of an energetically critical intramolecular N⋅⋅⋅HO hydrogen bond within the product) and is enabled mech-anistically by a process in which the silanone initially acts in umpolung fashion as a base (rather than an acid), due to the strongly electron-releasing and sterically bulky nature of the ancillary boryl ligand.
Collapse
Affiliation(s)
- Yuwen Wang
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Agamemnon E Crumpton
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mathias A Ellwanger
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Caitilín McManus
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
4
|
Pahar S, van Ingen Y, Babaahmadi R, Kariuki BM, Wirth T, Richards E, Melen RL. Diverse Reactivity of Amidinate-Supported Boron Centers with the Hypersilyl Anion and Access to a Monomeric Secondary Boron Hydride. Inorg Chem 2024; 63:8302-8311. [PMID: 38652816 PMCID: PMC11080068 DOI: 10.1021/acs.inorgchem.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Diverse reactivity of the bulky tris(trimethylsilyl)silyl substituent [Si(SiMe3)3], also known as the hypersilyl group, was observed for amidinate-supported dichloro- and phenylchloroborane complexes. Treatment of the dichloroborane with potassium tris(trimethylsilyl)silyl led to the activation of the backbone β-carbon center and formation of saturated four-membered heterocyclic chloroboranes R'{Si(SiMe3)3}C(NR)2BCl [R' = Ph, R = Cy (3); R' = Ph, R = iPr (6); R' = tBu, R = Cy (8)], whereas the four-membered amidinate hypersilyl-substituted phenyl borane 4 {PhC(NCy)2B(Ph)[Si(SiMe3)3]} was observed for the case of an amidinate-supported phenylchloroborane. The highly deshielded 11B NMR spectroscopic resonance and the distinct difference in the 29Si NMR spectrum confirmed the presence of a σ-donating hypersilyl effect on compounds 3, 6, and 8. Reaction of 3 with the Lewis acid AlCl3 led to the formation of complex 11 in which an unusual cleavage of one of the C-N bonds of the amidinate backbone is observed. Nucleophilic substitution at the boron center of saturated chloroborane 3 with phenyllithium generated the phenylborane derivative 12, whereas the secondary monomeric boron hydride 13 was observed after treatment with alane (AlH3). All compounds (2-13) have been fully characterized by NMR spectroscopy and single-crystal X-ray structure determination studies.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff CF24 4HQ, Cymru/Wales, U.K.
| | - Yara van Ingen
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff CF24 4HQ, Cymru/Wales, U.K.
| | - Rasool Babaahmadi
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff CF24 4HQ, Cymru/Wales, U.K.
| | - Benson M. Kariuki
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, U.K.
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, U.K.
| | - Emma Richards
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff CF24 4HQ, Cymru/Wales, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Cymru/Wales, U.K.
| | - Rebecca L. Melen
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff CF24 4HQ, Cymru/Wales, U.K.
| |
Collapse
|
5
|
Pahar S, Sharma V, Raj KV, Sangole MP, George CP, Singh K, Vanka K, Gonnade RG, Sen SS. Tridentate NacNac Tames T-Shaped Nickel(I) Radical. Chemistry 2024; 30:e202303957. [PMID: 38051591 DOI: 10.1002/chem.202303957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The reaction of a nickel(II) chloride complex containing a tridentate β-diketiminato ligand with a picolyl group [2,6-iPr2 -C6 H3 NC(Me)CHC(Me)NH(CH2 py)]Ni(II)Cl (1)] with KSi(SiMe3 )3 conveniently afforded a nickel(I) radical with a T-shaped geometry (2). The compound's metalloradical nature was confirmed through electron paramagnetic resonance (EPR) studies and its reaction with TEMPO, resulting in the formation of a highly unusual three-membered nickeloxaziridine complex (3). When reacted with disulfide and diselenide, the S-S and Se-Se bonds were cleaved, and a coupled product was formed through carbon atom of the pyridine-imine group. The nickel(I) radical activates dihydrogen at room temperature and atmospheric pressure to give the monomeric nickel hydride.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Mayur P Sangole
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Christy P George
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kirandeep Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Gour K, Bisai MK, Sen SS. Hypersilyl Substituent in Heavier Low‐valent Group 14 Chemistry. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kritika Gour
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Milan Kumar Bisai
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
7
|
Fontana N, Espinosa-Jalapa NA, Seidl M, Bauer JO. Hidden silylium-type reactivity of a siloxane-based phosphonium-hydroborate ion pair. Chem Commun (Camb) 2022; 58:2144-2147. [PMID: 35050278 DOI: 10.1039/d1cc07016a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of siloxane-based cations with hidden silylium-type reactivity is provided, which, in combination with an arylborate counteranion, initiates a highly selective para-C(sp2)-F defunctionalization of a perfluorinated aryl group. The hydrodefluorinated aryl borane is obtained as a crystalline solid via continuous sublimation during the reaction. The heterocyclic six-membered cation could be obtained single-crystalline after dehydrogenative anion exchange. DFT calculations give insight into the bonding within the siloxane-based cation and the mechanism of the ion pair reaction.
Collapse
Affiliation(s)
- Nicolò Fontana
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany.
| | - Noel Angel Espinosa-Jalapa
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany.
| | - Michael Seidl
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany.
| | - Jonathan O Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, Regensburg D-93053, Germany.
| |
Collapse
|
8
|
Pahar S, Sharma V, Tothadi S, Sen SS. Pyridylpyrrolido ligand in Ge(II) and Sn(II) chemistry: synthesis, reactivity and catalytic application. Dalton Trans 2021; 50:16678-16684. [PMID: 34757370 DOI: 10.1039/d1dt03136h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our previous communication, we have reported the synthesis of a new chlorogermylene (B) featuring a pyridylpyrrolido ligand. This study details the preparation of a series of new germylenes and stannylenes starting from B. A transmetallation reaction between B and SnCl2 led to the analogous chlorostannylene (1) with the simultaneous elimination of GeCl2. This is a very unusual example of transmetallation between two elements of the same group. The preparation of 1via lithiation led to the formation of 2 as a side product, where the ortho C-H bond of the pyridine ring was activated and functionalized with a nBu moiety. Subsequently, B and 1 were used as precursors to generate germylene (4) and stannylene (5) featuring tris(trimethylsilyl)silyl (hypersilyl) moieties. We also prepared tetrafluoropyridyl germylene (6) by reacting 4 with C5F5N with the simultaneous elimination of (Me3Si)3SiF by utilizing the fluoride affinity of the silicon atom. As there is scarcity of Sn(II) compounds as single-site catalysts, we investigated 5 as a catalyst towards the hydroboration of aldehydes, ketones, alkenes and alkynes. All the compounds have been characterized by single-crystal X-ray diffraction and by state of the art spectroscopic studies.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|