1
|
Bugarin A, Patil SA, Tran RQ, Marichev KO. Metal complexes of backbone-halogenated imidazol-2-ylidenes. Inorganica Chim Acta 2024; 572:122263. [PMID: 39156221 PMCID: PMC11326507 DOI: 10.1016/j.ica.2024.122263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In this manuscript, literature reports on mono- and di-halogen (F, Cl, Br, and I) substituted at positions 4 or/and 4,5 imidazol-2-ylidene (NHC) metal complexes are discussed: particularly, their structural diversity with various metals (groups 6-13), important physicochemical properties, catalytic and medicinal/biological applications are reviewed. To our knowledge, there are no literature reports on group 4 and 5 metal complexes with this type of NHC ligands. Halogenated imidazol-2-ylidene metal complexes deserve special attention because halogens are the classic electron donating groups (mesomerically) in conjugated aromatic/heteroaromatic ring systems, but electron withdrawing inductively. However, they exhibit a significant electron withdrawing inductive effect, thus providing unique electronic properties. This is important for fine tuning of σ-donor abilities of the "carbenic" carbon of imidazol-2-ylidenes, which directly affect catalytic performance of their metal complexes. Other applications, advantages, and disadvantages of halogenated vs. unsubstituted imidazol-2-ylidene metal complexes are critically analyzed and summarized in this review.
Collapse
Affiliation(s)
- Alejandro Bugarin
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Kanakapura, Bangalore, Karnataka, India
| | - Ryan Q. Tran
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | | |
Collapse
|
2
|
Aktaş A, Yakalı G, Demir Y, Gülçin İ, Aygün M, Gök Y. The palladium-based complexes bearing 1,3-dibenzylbenzimidazolium with morpholine, triphenylphosphine, and pyridine derivate ligands: synthesis, characterization, structure and enzyme inhibitions. Heliyon 2022; 8:e10625. [PMID: 36185151 PMCID: PMC9520214 DOI: 10.1016/j.heliyon.2022.e10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022] Open
Abstract
The palladium-based complexes bearing N-heterocyclic carbene (NHC) ligand have long attracted attention as active catalysts for many catalytic reactions. Recently, the biological activities of these complexes, which are stable to air and moisture, have also been wondered. With the aim, we report the synthesis of a series of (NHC)Pd(Br2)(L) complexes (NHC: 1,3-dibenzylbenzimidazolium, L: morpholine, triphenylphosphine, pyridine, 3-chloropyridine, and 2-aminopyridine). All complexes were characterized by NMR (1H and 13C), FTIR spectroscopic and elemental analysis techniques. In addition, the single crystal structures of the complex 3, 4, and 6 were determined through single crystal x-ray crystallographic method. Furthermore, the carbonic anhydrase I and II isoenzymes (hCAs) and acetylcholinesterase (AChE) inhibition effects of these palladium-based complexes bearing NHC ligand were investigated. They showed highly potent inhibition effect with Ki values are between 10.06 ± 1.49-68.56 ± 11.53 nM for hCA I isoenzyme, 7.74 ± 0.66 to 49.39 ± 6.50 nM for hCA II isoenzyme and 22.83 ± 3.21 to 64.09 ± 9.05 nM for AChE enzyme.
Collapse
Affiliation(s)
- Aydın Aktaş
- Inonu University, Vocational School of Health Service, 44280, Malatya, Turkey
| | - Gül Yakalı
- Department of Engineering Sciences, Faculty of Engineering, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75000, Ardahan, Turkey
| | - İlhami Gülçin
- Atatürk University, Faculty of Science, Department of Chemistry, 25240, Erzurum, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, 35150, Izmir, Turkey
| | - Yetkin Gök
- Department of Chemistry, Faculty of Science and Arts, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
3
|
Pasyukov DV, Shevchenko MA, Shepelenko KE, Khazipov OV, Burykina JV, Gordeev EG, Minyaev ME, Chernyshev VM, Ananikov VP. One‐Step Access to Heteroatom‐Functionalized Imidazol(in)ium Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Maxim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Konstantin E. Shepelenko
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Evgeniy G. Gordeev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
4
|
Barnett C, Harper JB, Cole ML. Correlating Electronic Properties of
N
‐Heterocyclic Carbenes with Structure, and the Implications of Using Different Probes. ChemistrySelect 2022. [DOI: 10.1002/slct.202104348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher Barnett
- School of Chemistry University of New South Wales, UNSW Sydney NSW 2052 Australia
- Current address: School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Jason B. Harper
- School of Chemistry University of New South Wales, UNSW Sydney NSW 2052 Australia
| | - Marcus L. Cole
- School of Chemistry University of New South Wales, UNSW Sydney NSW 2052 Australia
| |
Collapse
|
5
|
Pasyukov D, Shevchenko M, Shepelenko K, Khazipov O, Burykina J, Gordeev E, Minyaev M, Chernyshev V, Ananikov VP. One-Step Access to Heteroatom-Functionalized Imidazol(in)ium Salts. Angew Chem Int Ed Engl 2021; 61:e202116131. [PMID: 34963027 DOI: 10.1002/anie.202116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Imidazolium salts have ubiquitous applications in energy research, catalysis, materials and medicinal sciences. Here, we report a new strategy for the synthesis of diverse heteroatom-functionalized imidazolium and imidazolinium salts from easily available 1,4-diaza-1,3-butadienes in one step. The strategy relies on a discovered family of unprecedented nucleophilic addition/cyclization reactions with trialkyl orthoformates and heteroatomic nucleophiles. To probe general areas of application, synthesized N-heterocyclic carbene (NHC) precursors were feasible for direct metallation to give functionalized M/carbene complexes (M = Pd, Ni, Cu, Ag, Au), which were isolated in individual form. The utility of chloromethyl function for the postmodification of the synthesized salts and Pd/carbene complexes was demonstrated. The obtained complexes and imidazolium salts demonstrated good activities in Pd- or Ni-catalyzed model cross-coupling and C-H activation reactions.
Collapse
Affiliation(s)
- Dmitry Pasyukov
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Maxim Shevchenko
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Konstantin Shepelenko
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemitry, RUSSIAN FEDERATION
| | - Oleg Khazipov
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Julia Burykina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Catalysis, RUSSIAN FEDERATION
| | - Evgeniy Gordeev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Catalysis, RUSSIAN FEDERATION
| | - Mikhail Minyaev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Catalysis, RUSSIAN FEDERATION
| | - Victor Chernyshev
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, RUSSIAN FEDERATION
| |
Collapse
|
6
|
Ahmad Bhat I, Avinash I, Kumar Sachan S, Singh S, Anantharaman G. Efficient Synthesis of Cu(II)‐
N
‐Heterocyclic Carbene Complexes in Water and Their Activity Towards Aerobic Alcohol Oxidation. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Irshad Ahmad Bhat
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Iruthayaraj Avinash
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Sharad Kumar Sachan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | - Sadhana Singh
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208016 India
| | | |
Collapse
|
7
|
Munzeiwa WA, Omondi B, Nyamori VO. Architecture and synthesis of P ,N-heterocyclic phosphine ligands. Beilstein J Org Chem 2020; 16:362-383. [PMID: 32256853 PMCID: PMC7082614 DOI: 10.3762/bjoc.16.35] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/19/2020] [Indexed: 11/23/2022] Open
Abstract
Diverse P,N-phosphine ligands reported to date have performed exceptionally well as auxiliary ligands in organometallic catalysis. Phosphines bearing 2-pyridyl moieties prominently feature in literature as compared to phosphines with five-membered N-heterocycles. This discussion seeks to paint a broad picture and consolidate different synthetic protocols and techniques for N-heterocyclic phosphine motifs. The introduction provides an account of P,N-phosphine ligands, and their structural and coordination benefits from combining heteroatoms with different basicity in one ligand. The body discusses the synthetic protocols which focus on P–C, P–N-bond formation, substrate and nucleophile types and different N-heterocycle construction strategies. Selected references are given in relation to the applications of the ligands.
Collapse
Affiliation(s)
- Wisdom A Munzeiwa
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Bernard Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, Pietermaritzburg 3201, South Africa
| | - Vincent O Nyamori
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
8
|
Avinash I, Parveen S, Anantharaman G. Backbone Boron-Functionalized Imidazoles/Imidazolium Salts: Synthesis, Structure, Metalation Studies, and Fluoride Sensing Properties. Inorg Chem 2020; 59:5646-5661. [DOI: 10.1021/acs.inorgchem.0c00348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Iruthayaraj Avinash
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sabeeha Parveen
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Ganapathi Anantharaman
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
9
|
Khosravi F, Gholinejad M, Lledó D, Grindlay G, Nájera C, Sansano JM. 1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Doddi A, Peters M, Tamm M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chem Rev 2019; 119:6994-7112. [PMID: 30983327 DOI: 10.1021/acs.chemrev.8b00791] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
N-Heterocyclic carbenes (NHC) are nowadays ubiquitous and indispensable in many research fields, and it is not possible to imagine modern transition metal and main group element chemistry without the plethora of available NHCs with tailor-made electronic and steric properties. While their suitability to act as strong ligands toward transition metals has led to numerous applications of NHC complexes in homogeneous catalysis, their strong σ-donating and adaptable π-accepting abilities have also contributed to an impressive vitalization of main group chemistry with the isolation and characterization of NHC adducts of almost any element. Formally, NHC coordination to Lewis acids affords a transfer of nucleophilicity from the carbene carbon atom to the attached exocyclic moiety, and low-valent and low-coordinate adducts of the p-block elements with available lone pairs and/or polarized carbon-element π-bonds are able to act themselves as Lewis basic donor ligands toward transition metals. Accordingly, the availability of a large number of novel NHC adducts has not only produced new varieties of already existing ligand classes but has also allowed establishment of numerous complexes with unusual and often unprecedented element-metal bonds. This review aims at summarizing this development comprehensively and covers the usage of N-heterocyclic carbene adducts of the p-block elements as ligands in transition metal chemistry.
Collapse
Affiliation(s)
- Adinarayana Doddi
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Marius Peters
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Matthias Tamm
- Technische Universität Braunschweig, Institut für Anorganische und Analytische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
11
|
Nicholls LDM, Alcarazo M. Applications of α-Cationic Phosphines as Ancillary Ligands in Homogeneous Catalysis. CHEM LETT 2019. [DOI: 10.1246/cl.180810] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Leo D. M. Nicholls
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Avinash I, Gupta V, Karthik V, Anantharaman G. A straightforward synthesis of 4,5-dihalofunctionalized imidazol-2-ylidene/imidazolyl-metal complexes from trihaloimidazolium salts/imidazoles: Structure and catalytic studies. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Valyaev DA, Uvarova MA, Grineva AA, César V, Nefedov SN, Lugan N. Post-coordination backbone functionalization of an imidazol-2-ylidene and its application to synthesize heteropolymetallic complexes incorporating the ambidentate IMesCO2−ligand. Dalton Trans 2016; 45:11953-7. [DOI: 10.1039/c6dt02060g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The C4-carboxylation of the archetypal IMes ligand was achieved directly on its complexed form for the first time, and the resulting ambidentate IMesCO2−ligand was exploited for the formation of heteropolymetallic complexes.
Collapse
Affiliation(s)
- Dmitry A. Valyaev
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse
- UPS
| | - Marina A. Uvarova
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Alina A. Grineva
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Vincent César
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse
- UPS
| | - Sergei N. Nefedov
- Kurnakov Institute of General and Inorganic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Noël Lugan
- Laboratoire de Chimie de Coordination du CNRS
- 31077 Toulouse Cedex 4
- France
- Université de Toulouse
- UPS
| |
Collapse
|
14
|
Ruiz J, Mesa AF, Sol D. 1,3-Dimethyl-4-(diphenylphosphino)imidazolium Triflate: A Functionalized Ionic Liquid with Ambivalent Coordination Capability. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Javier Ruiz
- Departamento de Quı́mica
Orgánica e Inorgánica, Facultad de Quı́mica, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Alejandro F. Mesa
- Departamento de Quı́mica
Orgánica e Inorgánica, Facultad de Quı́mica, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Daniel Sol
- Departamento de Quı́mica
Orgánica e Inorgánica, Facultad de Quı́mica, Universidad de Oviedo, E-33006 Oviedo, Spain
| |
Collapse
|
15
|
Gupta V, Karthik V, Anantharaman G. Labile dioxy-functionalised zwitterionic imidazolinium salt: access to zwitterionic and neutral imidazolidin-2-ylidene derivatives and π-acceptor properties of imidazolidine-2-selones. RSC Adv 2015. [DOI: 10.1039/c5ra15333f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The synthesis of the title compound and effect of backbone oxy-derivatisation in imidazolidine derivatives on the π-acceptor property are reported.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur–208016
- India
| | - Vedhagiri Karthik
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur–208016
- India
| | | |
Collapse
|