1
|
Hauser A, Münzfeld L, Uhlmann C, Lebedkin S, Schlittenhardt S, Ruan TT, Kappes MM, Ruben M, Roesky PW. It's not just the size that matters: crystal engineering of lanthanide-based coordination polymers. Chem Sci 2024; 15:1338-1347. [PMID: 38274072 PMCID: PMC10806785 DOI: 10.1039/d3sc03746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
Synthesis and characterization of Lewis base free coordination polymers of selected lanthanides are presented. For this purpose, the substituted CotTIPS ligand (CotTIPS = 1,4-bis-triisopropylsilyl-cyclo-octatetraendiide) was used to synthesize homoleptic, anionic multidecker compounds of the type [K{LnIII(ɳ8-CotTIPS)2}]n. Depending on the solvent used for crystallization and the ionic radii of the lanthanide cations, three different categories of one-dimensional heterobimetallic coordination polymers were obtained in the solid state. For the early lanthanides La and Ce a unique helical conformation was obtained by crystallization from toluene, while the ionic radius of Pr seems to be a turning point towards the crystallization of zigzag polymers. For Er a third structural motif, a trapezoidal wave polymer was observed. Additionally, the zigzag polymer for all compounds could be obtained by changing the solvent from toluene to Et2O, reavealing a correlation between solid-state structure and ionic radii as well as solvent. While photoluminescence (PL) properties of Cot-lanthanide compounds are scarce, the La complexes show ligand centered green luminescence, whereas the Ce complexes reveal deep red emission origin from d-f transitions. The Er-compounds are single-molecule magnets, in which the magnetic relaxation of each Er ion occurs isolated from its neighbors at temperatures above 10 K, while below 9 K a strong antiferromagnetic coupling between the Er ions was seen.
Collapse
Affiliation(s)
- Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Luca Münzfeld
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Cedric Uhlmann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| | - Sergei Lebedkin
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Sören Schlittenhardt
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Ting-Ting Ruan
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 D-76131 Karlsruhe Germany
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Centre Européen de Science Quantique (CESQ), Institut de Science et d'Ingénierie Supramoléculaires (ISIS, UMR 7006), CNRS-Université de Strasbourg 8 allée Gaspard Monge BP 70028 67083 Strasbourg Cedex France
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstraße 15 D-76131 Karlsruhe Germany
| |
Collapse
|
2
|
Shafi Z, Gibson JK. Organolanthanide Complexes Containing Ln-CH 3 σ-bonds: Unexpectedly Similar Hydrolysis Rates for Trivalent and Tetravalent Organocerium. Inorg Chem 2023; 62:18399-18413. [PMID: 37910232 DOI: 10.1021/acs.inorgchem.3c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We report the gas-phase preparation, isolation, and reactivity of a series of organolanthanides featuring the Ln-CH3 bond. The complexes are formed by decarboxylating anionic lanthanide acetates to form trivalent [LnIII(CH3)(CH3CO2)3]- (Ln = La, Ce, Pr, Nd, Sm, Tb, Tm, Yb, Lu), divalent [EuII(CH3)(CH3CO2)2]-, and the first examples of tetravalent organocerium complexes featuring CeIV-Calkyl σ-bonds: [CeIV(O)(CH3)(CH3CO2)2]- and [CeIV(O)(CH3)(NO3)2]-. Attempts to isolate PrIV-CH3 and TbIV-CH3 were unsuccessful; however, fragmentation patterns reveal that the oxidation of LnIII to a LnIV-oxo-acetate complex is more favorable for Ln = Pr than for Ln = Tb. The rate of Ln-CH3 hydrolysis is a measure of bond stability, and it decreases from LaIII-CH3 to LuIII-CH3, with increasing steric crowding for smaller Ln stabilizing the harder Ln-CH3 bond against hydrolysis. [EuII(CH3)(CH3CO2)2]- engages in a much faster hydrolysis versus LnIII-CH3. The surprising observation of similar hydrolysis rates for CeIV-CH3 and CeIII-CH3 is discussed with respect to sterics, the oxo ligand, and bond covalency in σ-bonded organolanthanides.
Collapse
Affiliation(s)
- Ziad Shafi
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Moore WNG, White JRK, Wedal JC, Furche F, Evans WJ. Reduction of Rare-Earth Metal Complexes Induced by γ Irradiation. Inorg Chem 2022; 61:17713-17718. [DOI: 10.1021/acs.inorgchem.2c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William N. G. Moore
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jessica R. K. White
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Justin C. Wedal
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Pugliese ER, Benner F, Castellanos E, Delano F, Demir S. Heteroleptic Rare-Earth Tris(metallocenes) Containing a Dibenzocyclooctatetraene Dianion. Inorg Chem 2022; 61:2444-2454. [PMID: 35042339 DOI: 10.1021/acs.inorgchem.1c03230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isolable heteroleptic tris(metallocenes) containing five-membered and larger rings remain extremely scarce. The utilization of tripositive rare-earth-metal ions with ionic radii >1 Å allowed access to unprecedented and sterically congested dibenzocyclooctatetraenyl (dbCOT) metallocenes, [K(crypt-222)][Cptet2RE(η2-dbCOT)] (RE = Y (1), Dy (2); Cptet = tetramethylcyclopentadienyl), through a salt metathesis reaction involving Cptet2RE(BPh4) and the potassium salt of the dbCOT dianion. The solid-state structures were investigated by single-crystal X-ray diffraction, magnetometry, and IR spectroscopy and provided evidence for the first crystallographically characterized (dbCOT)2- anion in a complex containing d- or f-block metals. Remarkably, the (Cptet)- ligands force a distortion from planarity within the (dbCOT)2- moiety, engendering a rare η2-bonding motif, as opposed to the classical η8 conformation observed in complexes bearing a (COT)2- ion. The η2 coordination mode was proven crystallographically between 100 and 298 K and computationally (DFT and NBO). Furthermore, nucleus independent chemical shift (NICS) calculations uncovered significant ring current within the dbCOT ligand. The solution-state properties of 1 and 2 were analyzed via cyclic voltammetry, NMR, and UV-vis spectroscopy. Cyclic voltammograms of 1 and 2 exhibit a quasi-reversible feature indicating the accessibility of complexes with dbCOT in two oxidation states (dbCOT2-/3-•). Importantly, the dysprosium congener, 2, is a zero-field single-molecule magnet (SMM).
Collapse
Affiliation(s)
- Elizabeth R Pugliese
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Francis Delano
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48823, United States
| |
Collapse
|
5
|
Münzfeld L, Hauser A, Hädinger P, Weigend F, Roesky PW. The Archetypal Homoleptic Lanthanide Quadruple-Decker-Synthesis, Mechanistic Studies, and Quantum Chemical Investigations. Angew Chem Int Ed Engl 2021; 60:24493-24499. [PMID: 34486795 PMCID: PMC8596981 DOI: 10.1002/anie.202111227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 12/26/2022]
Abstract
Reduction of [SmIII (COT1,4-SiiPr3 )(BH4 )(thf)] (COT1,4-SiiPr3 =1,4-(i Pr3 Si)3 C8 H6 ) with KC8 resulted in [SmIII/II/III (COT1,4-SiiPr3 )4 ], the first example of a homoleptic lanthanide quadruple-decker. As indicated by an analysis of the bond metrics in the solid-state, the inner Sm ion is present in the divalent oxidation state, while the outer ones are trivalent. This observation could be confirmed by quantum chemical calculations. Mechanistic studies revealed not only insight into possible formation pathways of [SmIII/II/III (COT1,4-SiiPr3 )4 ] but also resulted in the transformation to other mixed metal sandwich complexes with unique structural properties. These are the 1D-polymeric chain structured [KSmIII (COT1,4-SiiPr3 )]n and the hexametallic species [(tol)K(COT1,4-SiiPr3 )SmII (COT1,4-SiiPr3 )K]2 which were initially envisioned as possible building blocks as part of different retrosynthetically guided pathways that we developed.
Collapse
Affiliation(s)
- Luca Münzfeld
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 1576131KarlsruheGermany
| | - Adrian Hauser
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 1576131KarlsruheGermany
| | - Pauline Hädinger
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 1576131KarlsruheGermany
| | - Florian Weigend
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Strasse 435032MarburgGermany
| | - Peter W. Roesky
- Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyEngesserstrasse 1576131KarlsruheGermany
| |
Collapse
|
6
|
Münzfeld L, Hauser A, Hädinger P, Weigend F, Roesky PW. The Archetypal Homoleptic Lanthanide Quadruple‐Decker—Synthesis, Mechanistic Studies, and Quantum Chemical Investigations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luca Münzfeld
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Pauline Hädinger
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| | - Florian Weigend
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Peter W. Roesky
- Institute of Inorganic Chemistry Karlsruhe Institute of Technology Engesserstrasse 15 76131 Karlsruhe Germany
| |
Collapse
|
7
|
Chung AB, Ryan AJ, Fang M, Ziller JW, Evans WJ. Reductive Reactivity of the 4f 75d 1 Gd(II) Ion in {Gd II[N(SiMe 3) 2] 3} -: Structural Characterization of Products of Coupling, Bond Cleavage, Insertion, and Radical Reactions. Inorg Chem 2021; 60:15635-15645. [PMID: 34606242 DOI: 10.1021/acs.inorgchem.1c02241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The reductive reactivity of a Ln(II) ion with a nontraditional 4fn5d1 electron configuration has been investigated by studying reactions of the {GdII(N(SiMe3)2)3]}- anion with a variety of reagents that survey the many reaction pathways available to this ion. The chemistry of both [K(18-c-6)2]+ and [K(crypt)]+ salts (18-c-6 = 18-crown-6; crypt = 2.2.2-cryptand) was examined to study the effect of the countercation. CS2 reacts with the crown salt [K(18-c-6)2][Gd(NR2)3] (1) to generate the bimetallic (CS3)2- complex {[K(18-c-6)](μ3-CS3-κS,κ2S',S'')Gd(NR2)2]}2, which contains two trithiocarbonate dianions that bridge Gd(III) centers and a potassium ion coordinated by 18-c-6. In contrast, the only crystalline product isolated from the reaction of CS2 with the crypt salt [K(crypt)][Gd(NR2)3] (2) is [K(crypt)]{(R2N)2Gd[SCS(CH2)Si(Me2)N(SiMe3)-κN,κS]}, which has a CS2 unit inserted into a cyclometalated amide ligand. Complexes 1 and 2 reductively couple pyridine to form bridging dipyridyl moieties, (NC5H4-C5H4N)2-, that generate bimetallic complexes differing only in the countercation, {[K(18-c-6)(C5H5N)2]}2{[(R2N)3Gd]2[μ-(NC5H4-C5H4N)2]} and [K(crypt)]2{[(R2N)3Gd]2[μ-(NC5H4-C5H4N)2]}. Complexes 1 and 2 also show similar reactivity with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to form the (TEMPO)- complexes [K(18-c-6)][(R2N)3Gd(η1-ONC5H6Me4)] and [K(crypt)][(R2N)3Gd(η1-ONC5H6Me4)], respectively. The first example of a bimetallic coordination complex containing a Bi-Gd bond, [K(crypt)][(R2N)3Gd(BiPh2)], was obtained by treating 2 with BiPh3.
Collapse
Affiliation(s)
- Amanda B Chung
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Austin J Ryan
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Ming Fang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Celis-Barros C, Albrecht-Schönzart T, Windorff CJ. Computational Investigation of the Bonding in [(η 5–Cp′) 3(η 1–Cp′)M] 1– (M = Pu, U, Ce). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Thomas Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
| | - Cory J. Windorff
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, RM. 118 DLC, Tallahassee, Florida 32306, United States
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, PO Box 3001, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
9
|
Windorff CJ, Sperling JM, Albrecht-Schönzart TE, Bai Z, Evans WJ, Gaiser AN, Gaunt AJ, Goodwin CAP, Hobart DE, Huffman ZK, Huh DN, Klamm BE, Poe TN, Warzecha E. A Single Small-Scale Plutonium Redox Reaction System Yields Three Crystallographically-Characterizable Organoplutonium Complexes. Inorg Chem 2020; 59:13301-13314. [PMID: 32910649 DOI: 10.1021/acs.inorgchem.0c01671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An approach to obtaining substantial amounts of data from a hazardous starting material that can only be obtained and handled in small quantities is demonstrated by the investigation of a single small-scale reaction of cyclooctatetraene, C8H8, with a solution obtained from the reduction of Cp'3Pu (Cp' = C5H4SiMe3) with potassium graphite. This one reaction coupled with oxidation of a product has provided single-crystal X-ray structural data on three organoplutonium compounds as well as information on redox chemistry thereby demonstrating an efficient route to new reactivity and structural information on this highly radioactive element. The crystal structures were obtained from the reduction of C8H8 by a putative Pu(II) complex, (Cp'3PuII)1-, generated in situ, to form the Pu(III) cyclooctatetraenide complex, [K(crypt)][(C8H8)2PuIII], 1-Pu, and the tetra(cyclopentadienyl) Pu(III) complex, [K(crypt)][Cp'4PuIII], 2-Pu. Oxidation of the sample of 1-Pu with Ag(I) afforded a third organoplutonium complex that has been structurally characterized for the first time, (C8H8)2PuIV, 3-Pu. Complexes 1-Pu and 3-Pu contain Pu sandwiched between parallel (C8H8)2- rings. The (Cp'4PuIII)- anion in 2-Pu features three η5-Cp' rings and one η1-Cp' ring, which is a rare example of a formal Pu-C η1-bond. In addition, this study addresses the challenge of small-scale synthesis imparted by radiological and material availability of transuranium isotopes, in particular that of pure metal samples. A route to an anhydrous Pu(III) starting material from the more readily available PuIVO2 was developed to facilitate reproducible syntheses and allow complete spectroscopic analysis of 1-Pu and 2-Pu. PuIVO2 was converted to PuIIIBr3(DME)2 (DME = CH3OCH2CH2OCH3) and subsequently PuIIIBr3(THF)x, which was used to independently synthesize 1-Pu, 2-Pu, and 3-Pu.
Collapse
Affiliation(s)
- Cory J Windorff
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States.,Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Thomas E Albrecht-Schönzart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zhuanling Bai
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - William J Evans
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Alyssa N Gaiser
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David E Hobart
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zachary K Huffman
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Daniel N Huh
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| | - Bonnie E Klamm
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Todd N Poe
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Evan Warzecha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
10
|
Greenough J, Zhou Z, Wei Z, Petrukhina MA. Versatility of cyclooctatetraenyl ligands in rare earth metal complexes of the [M 2(COT) 3(THF) 2] (M = Y and La) type. Dalton Trans 2019; 48:5614-5620. [PMID: 30958499 DOI: 10.1039/c9dt00868c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new organometallic cyclooctatetraenyl complexes of the type [M2(COT)3(THF)2] (M = Y and La) have been prepared, using optimized synthetic procedures, and fully characterized by X-ray diffraction analysis, IR and 1H NMR spectroscopies. The structures can be represented as formed by the double-decker [M(COT)2]- anion with an asymmetrically bound cationic [M(COT)(THF)2]+ unit. The COT rings in the anionic sandwich are not equidistant from the metal with the M-COTcentroid distances measuring at 1.991(5) Å and 2.074(5) Å for [Y(COT)2]-vs. 2.045(4) Å and 2.154(5) Å for [La(COT)2]-. The sandwich fragments are η2-coordinated to the second metal center with the average M-C distances of 2.837(4) Å and 2.879(5) Å for yttrium and lanthanum complexes, respectively. The M-COTcentroid distances in the cationic unit are 1.962(4) Å for the former and 2.009(2) Å for the latter.
Collapse
Affiliation(s)
- Joshua Greenough
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| | | | | | | |
Collapse
|
11
|
Chen X, Chen TT, Li WL, Lu JB, Zhao LJ, Jian T, Hu HS, Wang LS, Li J. Lanthanides with Unusually Low Oxidation States in the PrB3– and PrB4– Boride Clusters. Inorg Chem 2018; 58:411-418. [DOI: 10.1021/acs.inorgchem.8b02572] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Chen
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Wan-Lu Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun-Bo Lu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Li-Juan Zhao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Tian Jian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Palumbo CT, Darago LE, Dumas MT, Ziller JW, Long JR, Evans WJ. Structure, Magnetism, and Multi-electron Reduction Reactivity of the Inverse Sandwich Reduced Arene La2+ Complex [{[C5H3(SiMe3)2]2La}2(μ-η6:η6-C6H6)]1–. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chad T. Palumbo
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Lucy E. Darago
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Megan T. Dumas
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey R. Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
13
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|