1
|
Esteruelas MA, Moreno-Blázquez S, Oliván M, Oñate E. N,C,N-Pincers in Platinum Bimetallic Complexes: Influence of the Pincer and Bridging Ligands on the Metal-Metal Bond and the Photophysical Properties. Inorg Chem 2024; 63:14482-14494. [PMID: 39028899 DOI: 10.1021/acs.inorgchem.4c01712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Precursors PtCl{κ3-N,C,N-[py-C6HMe2-py]} (1), PtCl{κ3-N,C,N-[py-O-C6H3-O-py]} (2), Pt(OH){κ3-N,C,N-[py-C6HMe2-py]} (3), and Pt(OH){κ3-N,C,N-[py-O-C6H3-O-py]} (4) were used to prepare d8-platinum bimetallic complexes. Precursors 1 and 2 react with AgBF4 and 7-azaindole (Haz) to give [Pt{κ3-N,C,N-[py-C6HMe2-py]}{κ1-N-[Haz]}]BF4 (5) and [Pt{κ3-N,C,N-[py-O-C6H3-O-py]}{κ1-N-[Haz]}]BF4 (6) and 3 and 4 with indolo[2,3-b]indole (H2ii) to generate Pt{κ1-N-[Hii]}{κ3-N,C,N-[py-C6HMe2-py]} (7) and Pt{κ1-N-[Hii]}{κ3-N,C,N-[py-O-C6H3-O-py]} (8). Subsequent addition of 3 and 4 to 5-7 affords bimetallic derivatives [{Pt[κ3-N,C,N-(py-C6HMe2-py)]}2{μ-N,N-[az]}]BF4 (9), [{Pt[κ3-N,C,N-(py-O-C6H3-O-py)]}2{μ-N,N-[az]}]BF4 (10), and {Pt[κ3-N,C,N-(py-C6HMe2-py)]}2{μ-N,N-[ii]} (11). X-ray structures of 9-11 reveal separations between the metals in sequence 9 (3.0515(4) Å) < 10 (3.2689(9) Å) < 11 (3.2949(2) Å). DFT calculations support σ overlap of the dz2 orbitals of platinum atoms, for 9 and 10. Accordingly, their absorption spectra show a MMLCT transition. Complex 9 is a red emitter. The excited state has 3MMLCT characteristics and a Pt-Pt separation of 2.763 Å. Complex 11 is a dual emitter in the red and NIR regions, in solid. Both excited states have a 3LC/LMCT characteristic and platinum-platinum separations of 3.290 and 3.202 Å. Intermediate 5 is a green emitter that achieves quantum yields close to unity, when diluted in PMMA and 1,2-dichloroethane at low concentrations.
Collapse
Affiliation(s)
- Miguel A Esteruelas
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, Zaragoza 50009, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, Zaragoza 50009, Spain
| | - Montserrat Oliván
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, Zaragoza 50009, Spain
| | - Enrique Oñate
- Departamento de Química Inorgánica - Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) - Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Zaragoza - CSIC, Zaragoza 50009, Spain
| |
Collapse
|
2
|
Kirse TM, Maisuls I, Spierling L, Hepp A, Kösters J, Strassert CA. One Dianionic Luminophore with Three Coordination Modes Binding Four Different Metals: Toward Unexpectedly Phosphorescent Transition Metal Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306801. [PMID: 38161218 PMCID: PMC10953592 DOI: 10.1002/advs.202306801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Indexed: 01/03/2024]
Abstract
This work reports on a battery of coordination compounds featuring a versatile dianionic luminophore adopting three different coordination modes (mono, bi, and tridentate) while chelating Pd(II), Pt(II), Au(III), and Hg(II) centers. An in-depth structural characterization of the ligand precursor (H2 L) and six transition metal complexes ([HLPdCNtBu], [LPtCl], [LPtCNtBu], [LPtCNPhen], [HLHgCl], and [LAuCl]) is presented. The influence of the cations and coordination modes of the luminophore and co-ligands on the photophysical properties (including photoluminescence quantum yields (ΦL ), excited state lifetimes (τ), and average (non-)radiative rate constants) are evaluated at various temperatures in different phases. Five complexes show interesting photophysical properties at room temperature (RT) in solution. Embedment in frozen glassy matrices at 77 K significantly boosts their luminescence by suppressing radiationless deactivation paths. Thus, the Pt(II)-based compounds provide the highest efficiencies, with slight variations upon exchange of the ancillary ligand. In the case of [HLPdCNtBu], both ΦL and τ increase over 30-fold as compared to RT. Furthermore, the Hg(II) complex achieves, for the first time in its class, a ΦL exceeding 60% and millisecond-range lifetimes. This demonstrates that a judicious ligand design can pave the way toward versatile coordination compounds with tunable excited state properties.
Collapse
Affiliation(s)
- Thomas M. Kirse
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Leander Spierling
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| | - Alexander Hepp
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Jutta Kösters
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieUniversität MünsterCorrensstr. 28/3048149MünsterGermany
- CiMiCSoN and CeNTechUniversität MünsterHeisenbergstr. 1148149MünsterGermany
| |
Collapse
|
3
|
Jordan R, Maisuls I, Nair SS, Dietzek-Ivanšić B, Strassert CA, Klein A. Enhanced luminescence properties through heavy ancillary ligands in [Pt(C^N^C)(L)] complexes, L = AsPh 3 and SbPh 3. Dalton Trans 2023. [PMID: 38013458 DOI: 10.1039/d3dt03225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In the frame of our research aiming to develop efficient triplet-emitting materials, we are exploring the concept of introducing additional heavy atoms into cyclometalated transition metal complexes to enhance intersystem-crossing (ISC) and thus triplet emission through increased spin-orbit coupling (SOC). In an in-depth proof-of-principle study we investigated the double cyclometalated Pt(II) complexes [Pt(C^N^C)(PnPh3)] (HC^N^CH = 2,6-diphenyl-pyridine (H2dpp) or dibenzoacridine (H2dba); Pn = pnictogen atoms P, As, Sb, or Bi) through a combined experimental and theoretical approach. The derivatives containing Pn = P, As, and Sb were synthesised and characterised comprehensively using single crystal X-ray diffraction (scXRD), UV-vis absorption and emission spectroscopy, transient absorption (TA) spectroscopy and cyclic voltammetry (CV). Across the series P < As < Sb, a red-shift is observed concerning absorption and emission maxima as well as optical and electrochemical HOMO-LUMO gaps. Increased photoluminescence quantum yields ΦL and radiative rates kr from mixed metal-to-ligand charge transfer (MLCT)/ligand centred (LC) triplet states are observed for the heavier homologues. Transient absorption spectroscopy showed processes in the ps range that were assigned to the population of the T1 state by ISC. The heavy PnPh3 ancillary ligands are found to enhance the emission efficiency due to both higher Pt-Pn bond strength and stronger SOC related to increased MLCT character of the excited states. The experimental findings are mirrored in hybrid (TD-)DFT calculations. This allowed for extrapolation to the rather elusive Bi derivatives, which were synthetically not accessible. This shortcoming is attributed to the transmetalation of phenyl groups from BiPh3 to Pt, as supported by experimental NMR/MS as well as DFT studies.
Collapse
Affiliation(s)
- Rose Jordan
- University of Cologne, Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, D-50939 Köln, Germany.
| | - Iván Maisuls
- Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany.
| | - Shruthi S Nair
- Friedrich Schiller University Jena, Institute for Physical Chemistry (IPC), Helmholtzweg 4, 07743 Jena, Germany.
- Leibniz Institute for Photonic Technologies Jena (IPHT), Research Department Functional Interfaces, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Benjamin Dietzek-Ivanšić
- Friedrich Schiller University Jena, Institute for Physical Chemistry (IPC), Helmholtzweg 4, 07743 Jena, Germany.
- Leibniz Institute for Photonic Technologies Jena (IPHT), Research Department Functional Interfaces, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Cristian A Strassert
- Universität Münster, Institut für Anorganische und Analytische Chemie, CiMIC, CeNTech, Heisenbergstraße 11, D-48149 Münster, Germany.
| | - Axel Klein
- University of Cologne, Faculty for Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, D-50939 Köln, Germany.
| |
Collapse
|
4
|
Sun Y, Zhan F, Huang D, Wang X, Dou L, Xu K, Yang YF, Li G, She Y. 8-Phenylquinoline-Based Tetradentate 6/6/6 Platinum(II) Complexes for Near-Infrared Emitters. Inorg Chem 2023; 62:13156-13164. [PMID: 37531143 DOI: 10.1021/acs.inorgchem.3c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A series of novel tetradentate 6/6/6 Pt(II) complexes containing an 8-phenylquinoline-benzo[d]imidazole-carbazole ligand was designed; the Pt(II) complexes could be synthesized by metalizing the corresponding ligand with K2PtCl4 in high isolated yields of 60-90%. Experimental and theoretical studies suggested that the ligand modification of the quinoline moieties of the Pt(II) complexes could tune their electrochemical, photophysical, and excited-state properties. Notably, all the Pt(II) complexes exhibited highly electrochemical stabilities with reversible redox processes except the quasi-reversible reduction of PtYL3. The large π-conjugation of the ligand together with increased metal-to-ligand charge-transfer (3MLCT) characters in T1 states enabled the Pt(II) complexes to show broad Gaussian-type NIR emission spectra with high photoluminescence quantum efficiencies of 1.2-1.5% and short τ of 0.8-1.5 μs in dichloromethane at room temperature. This work should provide a valuable reference for the design and development of monomer NIR emitters.
Collapse
Affiliation(s)
- Yulu Sun
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Disheng Huang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Lijie Dou
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kewei Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Guijie Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
5
|
Salthouse R, Sil A, Gildea LF, Yufit DS, Williams JAG. Platinum(II) Complexes of Nonsymmetrical NCN-Coordinating Ligands: Unimolecular and Excimeric Luminescence Properties and Comparison with Symmetrical Analogues. Inorg Chem 2023; 62:12356-12371. [PMID: 37498694 PMCID: PMC10410614 DOI: 10.1021/acs.inorgchem.3c01439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 07/29/2023]
Abstract
A series of seven new platinum(II) complexes PtLnCl have been prepared, where Ln is an NCN-coordinating ligand comprising a benzene ring 1,3-disubstituted with two different azaheterocycles. In PtL1-5Cl, one heterocycle is a simple pyridine ring, while the other is an isoquinoline, a quinoline, a pyrimidine (L1, L2, L3), or a p-CF3- or p-OMe-substituted pyridine (L4 and L5). PtL6Cl incorporates both a p-CF3 and a p-OMe-substituted pyridine. The synthesis of the requisite proligands HLn is achieved using Pd-catalyzed cross-coupling methodology. The molecular structures of six of the Pt(II) complexes have been determined by X-ray diffraction. All the complexes are brightly luminescent in deoxygenated solution at room temperature. The absorption and emission properties are compared with those of the corresponding symmetrical complexes featuring two identical heterocycles, PtLnsymCl, and of the parent Pt(dpyb)Cl containing two unsubstituted pyridines [dpybH = 1,3-di(2-pyridyl)benzene]. While the absorption spectra of the nonsymmetrical complexes show features of both PtLnsymCl and Pt(dpyb)Cl, the emission generally resembles that of whichever of the corresponding symmetrical complexes has the lower-energy emission. PtL1Cl differs in that─at room temperature but not at 77 K─it displays emission bands that can be attributed to excited states involving both the pyridine and the isoquinoline rings, despite the latter being unequivocally lower in energy. This unusual behavior is attributed to thermally activated repopulation of the former excited state from the latter, facilitated by the very long-lived nature of the isoquinoline-based excited state. At elevated concentrations, all the complexes show an additional red-shifted emission band attributable to excimers. For PtL1Cl, the excimer strikingly dominates the emission spectra at all but the lowest concentrations (<10-5 M). Trends in the energies of the excimers and their propensity to form are compared with those of the symmetrical analogues.
Collapse
Affiliation(s)
| | - Amit Sil
- Department of Chemistry, Durham
University, South Road, Durham DH1
3LE, U.K.
| | - Louise F. Gildea
- Department of Chemistry, Durham
University, South Road, Durham DH1
3LE, U.K.
| | - Dmitry S. Yufit
- Department of Chemistry, Durham
University, South Road, Durham DH1
3LE, U.K.
| | | |
Collapse
|
6
|
Gajecki L, Sawicka B, Berg DJ, Oliver AG. Synthesis and Magnetic Studies of Two Neutral, Bis-Ligand Fe(II) Complexes Containing Carbazole- Bis(tetrazole) Ligands. Inorg Chem 2023. [PMID: 37478316 DOI: 10.1021/acs.inorgchem.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Previously reported carbazole-bis(tetrazole) (CzTR) ligands (where R = iPr and CH2-2,4,6-C6H2Me3) were used to synthesize air-stable, six-coordinate, octahedral bis-ligand Fe(II) complexes (CzTR)2Fe. The synthesis and characterization of these complexes using 1H nuclear magnetic resonance (NMR), X-ray crystallography, Mössbauer spectroscopy, and density functional theory (DFT) calculations are reported. Analysis of the magnetic properties revealed that the isopropyl derivative displays thermally induced spin crossover (SCO) over a temperature range of 150-350 K. This transition appears as an abrupt two-step transition in the solid state but simplifies to a smooth one-step transition in solution. The two-step transition in the solid state has been postulated to be due to lattice and solvation effects. In contrast, the slightly bulkier substituted CH2-2,4,6-C6H2Me3 (CH2Mes) Fe complex displays dramatically different magnetic behavior with no SCO and magnetic data suggesting low-spin Fe(II) with a possible TIP contribution. DFT calculations support the postulate that the change in magnetic behavior is primarily due to the nature of the ligand substituents.
Collapse
Affiliation(s)
- Leah Gajecki
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Barbara Sawicka
- Department of Mechanical Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - David J Berg
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Allen G Oliver
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Esteruelas MA, Moreno-Blázquez S, Oliván M, Oñate E. Competition between N, C, N-Pincer and N, N-Chelate Ligands in Platinum(II). Inorg Chem 2023; 62:10152-10170. [PMID: 37343120 PMCID: PMC11003652 DOI: 10.1021/acs.inorgchem.3c00694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 06/23/2023]
Abstract
Replacement of the chloride ligand of PtCl{κ3-N,C,N-[py-C6HR2-py]} (R = H (1), Me (2)) and PtCl{κ3-N,C,N-[py-O-C6H3-O-py]} (3) by hydroxido gives Pt(OH){κ3-N,C,N-[py-C6HR2-py]} (R = H (4), Me (5)) and Pt(OH){κ3-N,C,N-[py-O-C6H3-O-py]} (6). These compounds promote deprotonation of 3-(2-pyridyl)pyrazole, 3-(2-pyridyl)-5-methylpyrazole, 3-(2-pyridyl)-5-trifluoromethylpyrazole, and 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole. The coordination of the anions generates square-planar derivatives, which in solution exist as a unique species or equilibria between isomers. Reactions of 4 and 5 with 3-(2-pyridyl)pyrazole and 3-(2-pyridyl)-5-methylpyrazole provide Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[R'pz-py]} (R = H; R' = H (7), Me (8). R = Me; R' = H (9), Me (10)), displaying κ1-N1-pyridylpyrazolate coordination. A 5-trifluoromethyl substituent causes N1-to-N2 slide. Thus, 3-(2-pyridyl)-5-trifluoromethylpyrazole affords equilibria between Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[CF3pz-py]} (R = H (11a), Me (12a)) and Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N2-[CF3pz-py]} (R = H (11b), Me (12b)). 1,3-Bis(2-pyridyloxy)phenyl allows the chelating coordination of the incoming anions. Deprotonations of 3-(2-pyridyl)pyrazole and its substituted 5-methyl counterpart promoted by 6 lead to equilibria between Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[R'pz-py]} (R' = H (13a), Me (14a)) with a κ-N1-pyridylpyrazolate anion, keeping the pincer coordination of the di(pyridyloxy)aryl ligand, and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[R'pz-py]} (R' = H (13c), Me (14c)) with two chelates. Under the same conditions, 3-(2-pyridyl)-5-trifluoromethylpyrazole generates the three possible isomers: Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[CF3pz-py]} (15a), Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N2-[CF3pz-py]} (15b), and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[CF3pz-py]} (15c). The N1-pyrazolate atom produces a remote stabilizing effect on the chelating form, pyridylpyrazolates being better chelate ligands than pyridylpyrrolates. Accordingly, reactions of 4-6 with 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole yield Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[(CF3)2C4(py)HN]} (R = H (16), Me (17)) or Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[(CF3)2C4(py)HN]} (18), displaying κ1-N1-pyrrolate coordination. Complexes 7-10 are efficient green phosphorescent emitters (488-576 nm). In poly(methyl methacrylate) (PMMA) films and in dichloromethane, they experience self-quenching, due to molecular stacking. Aggregation occurs through aromatic π-π interactions, reinforced by weak platinum-platinum interactions.
Collapse
Affiliation(s)
- Miguel A. Esteruelas
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Sonia Moreno-Blázquez
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Montserrat Oliván
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| | - Enrique Oñate
- Departamento de Química
Inorgánica, Instituto de Síntesis Química y Catálisis
Homogénea (ISQCH), Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universidad de Zaragoza—CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Anizadeh MR, Torabi M, Zolfigol MA, Yarie M. Catalytic application Fe3O4@SiO2@(CH2)3-urea-dithiocarbamic acid for the synthesis of triazole-linked pyridone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Triplet Emitting C^N^C Cyclometalated Dibenzo[c,h]Acridine Pt(II) Complexes. Molecules 2022; 27:molecules27228054. [PMID: 36432153 PMCID: PMC9697690 DOI: 10.3390/molecules27228054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
In a series of Pt(II) complexes [Pt(dba)(L)] containing the very rigid, dianionic, bis-cyclometalating, tridentate C^N^C2− heterocyclic ligand dba2− (H2dba = dibenzo[c,h]acridine), the coligand (ancillary ligand) L = dmso, PPh3, CNtBu and Me2Imd (N,N’-dimethylimidazolydene) was varied in order to improve its luminescence properties. Beginning with the previously reported dmso complex, we synthesized the PPh3, CNtBu and Me2Imd derivatives and characterized them by elemental analysis, 1H (and 31P) NMR spectroscopy and MS. Cyclic voltammetry showed partially reversible reduction waves ranging between −1.89 and −2.10 V and increasing along the series Me2Imd < dmso ≈ PPh3 < CNtBu. With irreversible oxidation waves ranging between 0.55 (L = Me2Imd) and 1.00 V (dmso), the electrochemical gaps range between 2.65 and 2.91 eV while increasing along the series Me2Imd < CNtBu < PPh3 < dmso. All four complexes show in part vibrationally structured long-wavelength absorption bands peaking at around 530 nm. TD-DFT calculated spectra agree quite well with the experimental spectra, with only a slight redshift. The photoluminescence spectra of all four compounds are very similar. In fluid solution at 298 K, they show broad, only partially structured bands, with maxima at around 590 nm, while in frozen glassy matrices at 77 K, slightly blue-shifted (~580 nm) bands with clear vibronic progressions were found. The photoluminescence quantum yields ΦL ranged between 0.04 and 0.24, at 298 K, and between 0.80 and 0.90 at 77 K. The lifetimes τ at 298 K ranged between 60 and 14040 ns in Ar-purged solutions and increased from 17 to 43 µs at 77 K. The TD-DFT calculated emission spectra are in excellent agreement with the experimental findings. In terms of high ΦL and long τ, the dmso and PPh3 complexes outperform the CNtBu and Me2Imd derivatives. This is remarkable in view of the higher ligand strength of Me2Imd, compared with all other coligands, as concluded from the electrochemical data.
Collapse
|
10
|
Krause M, Maisuls I, Buss S, Strassert CA, Winter A, Schubert US, Nair SS, Dietzek-Ivanšić B, Klein A. Photophysical Study on the Rigid Pt(II) Complex [Pt(naphen)(Cl)] (Hnaphen = Naphtho[1,2-b][1,10]Phenanthroline and Derivatives. Molecules 2022; 27:molecules27207022. [PMID: 36296617 PMCID: PMC9606891 DOI: 10.3390/molecules27207022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = naphtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate C^N^N-coordinating pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnaphen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the N^C^N-coordinated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h’]diquinoline. The cyclic voltammetry showed reversible reductions for the C^N^N complexes, with markedly fewer negative potentials (around −1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen derivatives (around −1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes, the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared with thnaphen. The bdq complex was completely different, with an irreversible reduction at around −2 V caused by the N^C^N coordination pattern, which lacked a good electron acceptor such as the phenanthroline unit in the C^N^N ligand naphen. Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for the C^N^N complexes with the C≡CPh coligand and were red-shifted when compared with the Cl derivatives. The N^C^N-coordinated bdq complex was markedly blue-shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the N^C^N bdq complex indicated a higher LC character than assumed for the C^N^N-coordinated naphen and thnaphen complexes. The blue-shift was a result of the different N^C^N vs. C^N^N coordination. The photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K (0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on [Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT with an emission lifetime of around 3 µs.
Collapse
Affiliation(s)
- Maren Krause
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, 50939 Köln, Germany
| | - Iván Maisuls
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Heisenbergstr. 11, 48149 Münster, Germany
| | - Stefan Buss
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Heisenbergstr. 11, 48149 Münster, Germany
| | - Cristian A. Strassert
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, CeNTech, CiMIC, SoN, Heisenbergstr. 11, 48149 Münster, Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Shruthi S. Nair
- Institute for Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute for Photonic Technologies Jena (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute for Physical Chemistry (IPC), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Leibniz Institute for Photonic Technologies Jena (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
- Correspondence: (B.D.-I.); (A.K.); Tel.: +49-221-470-4006 (A.K.)
| | - Axel Klein
- University of Cologne, Faculty of Mathematics and Natural Sciences, Department of Chemistry, Institute for Inorganic Chemistry, Greinstrasse 6, 50939 Köln, Germany
- Correspondence: (B.D.-I.); (A.K.); Tel.: +49-221-470-4006 (A.K.)
| |
Collapse
|
11
|
Urea-dithiocarbamic acid functionalized magnetic nanoparticles modified with Ch-Cl: catalytic application for the synthesis of novel hybrid pyridones via cooperative geminal-vinylogous anomeric-based oxidation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
12
|
De Soricellis G, Fagnani F, Colombo A, Dragonetti C, Roberto D. Exploring the potential of N^C^N cyclometalated Pt(II) complexes bearing 1,3-di(2-pyridyl)benzene derivatives for imaging and photodynamic therapy. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Neururer F, Liu S, Leitner D, Baltrun M, Fisher KR, Kopacka H, Wurst K, Daumann LJ, Munz D, Hohloch S. Mesoionic Carbenes in Low- to High-Valent Vanadium Chemistry. Inorg Chem 2021; 60:15421-15434. [PMID: 34590834 PMCID: PMC8527456 DOI: 10.1021/acs.inorgchem.1c02087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/12/2022]
Abstract
We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.
Collapse
Affiliation(s)
- Florian
R. Neururer
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Shenyu Liu
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Daniel Leitner
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Marc Baltrun
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Katherine R. Fisher
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Holger Kopacka
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lena J. Daumann
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Dominik Munz
- Fakultät
NT, Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Stephan Hohloch
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Kletsch L, Jordan R, Köcher AS, Buss S, Strassert CA, Klein A. Photoluminescence of Ni(II), Pd(II), and Pt(II) Complexes [M(Me 2dpb)Cl] Obtained from C‒H Activation of 1,5-Di(2-pyridyl)-2,4-dimethylbenzene (Me 2dpbH). Molecules 2021; 26:molecules26165051. [PMID: 34443649 PMCID: PMC8401505 DOI: 10.3390/molecules26165051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
The three complexes [M(Me2dpb)Cl] (M = Ni, Pd, Pt) containing the tridentate N,C,N-cyclometalating 3,5-dimethyl-1,5-dipyridyl-phenide ligand (Me2dpb-) were synthesised using a base-assisted C‒H activation method. Oxidation potentials from cyclic voltammetry increased along the series Pt < Ni < Pd from 0.15 to 0.74 V. DFT calculations confirmed the essentially ligand-centred π*-type character of the lowest unoccupied molecular orbital (LUMO) for all three complexes in agreement with the invariant reduction processes. For the highest occupied molecular orbitals (HOMO), contributions from metal dyz, phenyl C4, C2, C1, and C6, and Cl pz orbitals were found. As expected, the dz2 (HOMO-1 for Ni) is stabilised for the Pd and Pt derivatives, while the antibonding dx2-y2 orbital is de-stabilised for Pt and Pd compared with Ni. The long-wavelength UV-vis absorption band energies increase along the series Ni < Pt < Pd. The lowest-energy TD-DFT-calculated state for the Ni complex has a pronounced dz2-type contribution to the overall metal-to-ligand charge transfer (MLCT) character. For Pt and Pd, the dz2 orbital is energetically not available and a strongly mixed Cl-to-π*/phenyl-to-π*/M(dyz)-to-π* (XLCT/ILCT/MLCT) character is found. The complex [Pd(Me2dpb)Cl] showed a structured emission band in a frozen glassy matrix at 77 K, peaking at 468 nm with a quantum yield of almost unity as observed for the previously reported Pt derivative. No emission was observed from the Ni complex at 77 or 298 K. The TD-DFT-calculated states using the TPSSh functional were in excellent agreement with the observed absorption energies and also clearly assessed the nature of the so-called "dark", i.e., d‒d*, excited configurations to lie low for the Ni complex (≥3.18 eV), promoting rapid radiationless relaxation. For the Pd(II) and Pt(II) derivatives, the "dark" states are markedly higher in energy with ≥4.41 eV (Pd) and ≥4.86 eV (Pt), which is in perfect agreement with the similar photophysical behaviour of the two complexes at low temperatures.
Collapse
Affiliation(s)
- Lukas Kletsch
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
| | - Rose Jordan
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
| | - Alicia S. Köcher
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
| | - Stefan Buss
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, D-48149 Münster, Germany;
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstr. 28/30, D-48149 Münster, Germany;
- CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstr. 11, D-48149 Münster, Germany
- Correspondence: (C.A.S.); (A.K.); Tel.: +49-221-470-4006 (A.K.)
| | - Axel Klein
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; (L.K.); (R.J.); (A.S.K.)
- Correspondence: (C.A.S.); (A.K.); Tel.: +49-221-470-4006 (A.K.)
| |
Collapse
|
15
|
Pinter P, Schüßlbauer CM, Watt FA, Dickmann N, Herbst-Irmer R, Morgenstern B, Grünwald A, Ullrich T, Zimmer M, Hohloch S, Guldi DM, Munz D. Bright luminescent lithium and magnesium carbene complexes. Chem Sci 2021; 12:7401-7410. [PMID: 34163830 PMCID: PMC8171342 DOI: 10.1039/d1sc00846c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
We report on the convenient synthesis of a CNC pincer ligand composed of carbazole and two mesoionic carbenes, as well as the corresponding lithium- and magnesium complexes. Mono-deprotonation affords a rare "naked" amide anion. In contrast to the proligand and its mono-deprotonated form, tri-deprotonated s-block complexes show bright luminescence, and their photophysical properties were therefore investigated by absorption- and luminescence spectroscopy. They reveal a quantum yield of 16% in solution at ambient temperature. Detailed quantum-chemical calculations assist in rationalizing the emissive properties based on an Intra-Ligand-Charge-Transfer (ILCT) between the carbazolido- and mesoionic carbene ligands. (Earth-)alkali metals prevent the distortion of the ligand following excitation and, thus, by avoiding non-radiative deactivation support bright luminescence.
Collapse
Affiliation(s)
- Piermaria Pinter
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
| | - Christoph M Schüßlbauer
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 3 D-91058 Erlangen Germany
| | - Fabian A Watt
- Department of Chemistry, Inorganic Chemistry, Paderborn University Warburger Straße 100 D-33098 Paderborn Germany
| | - Nicole Dickmann
- Department of Chemistry, Inorganic Chemistry, Paderborn University Warburger Straße 100 D-33098 Paderborn Germany
| | - Regine Herbst-Irmer
- University of Göttingen, Institute of Inorganic Chemistry Tammannstraße 4 D-37077 Göttingen Germany
| | - Bernd Morgenstern
- Inorganic Solid State Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| | - Annette Grünwald
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| | - Tobias Ullrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 3 D-91058 Erlangen Germany
| | - Michael Zimmer
- Inorganic and General Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| | - Stephan Hohloch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 3 D-91058 Erlangen Germany
| | - Dominik Munz
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| |
Collapse
|
16
|
2,6-Bis(1-butyl-1H-1,2,3-triazol-1-yl)pyridine-capped poly(N-vinylpyrrolidone)s: synthesis, complexation with metal ions, and self-assembly behavior. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Samanta S, Zheng C, Gajecki L, Berg DJ, Oliver AG, Crosby T, Godin L, Sandhu J. Carbazolyl- bis(triazole) and Carbazolyl- bis(tetrazole) Complexes of Palladium(II) and Platinum(II). J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1882674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Samya Samanta
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Cameron Zheng
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Leah Gajecki
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - David J. Berg
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Tristan Crosby
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Logan Godin
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | - Jaylene Sandhu
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
18
|
Direct Base-Assisted C‒H Cyclonickelation of 6-Phenyl-2,2'-bipyridine. Molecules 2020; 25:molecules25040997. [PMID: 32102281 PMCID: PMC7070369 DOI: 10.3390/molecules25040997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 11/17/2022] Open
Abstract
The organonickel complexes [Ni(Phbpy)X] (X = Br, OAc, CN) were obtained for the first time in a direct base-assisted arene C(sp2)-H cyclometalation reaction from the rather unreactive precursor materials NiX2 and HPhbpy (6-phenyl-2,2'-bipyridine) or from the versatile precursor [Ni(HPhbpy)Br2]2. Different from previously necessary C‒Br oxidative addition at Ni(0), an extended scan of reaction conditions allowed quantitative access to the title compound from Ni(II) on synthetically useful timescales through base-assisted C‒H activation in nonpolar media at elevated temperature. Optimisation of the reaction conditions (various bases, solvents, methods) identified 1:2 mixtures of acetate and carbonate as unrivalled synergetic base pairs in the optimum protocol that holds promise as a readily usable and easily tuneable access to a wide range of direct nickelation products. While for the base-assisted C‒H metalation of the noble metals Ru, Ir, Rh, or Pd, this acetate/carbonate method has been established for a few years, our study represents the leap into the world of the base metals of the 3d series.
Collapse
|
19
|
Tane S, Michinobu T. Cu(I)‐catalyzed azide–alkyne cycloaddition synthesis and fluorescent ion sensor behavior of carbazole‐triazole‐fluorene conjugated polymers. POLYM INT 2020. [DOI: 10.1002/pi.5976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shizuka Tane
- Department of Organic and Polymeric Materials Tokyo Institute of Technology Tokyo Japan
| | - Tsuyoshi Michinobu
- Department of Organic and Polymeric Materials Tokyo Institute of Technology Tokyo Japan
- Department of Materials Science and Engineering Tokyo Institute of Technology Tokyo Japan
| |
Collapse
|
20
|
Soellner J, Strassner T. Mesoionic 1,2,3‐Triazolo[1,5‐
a
]pyridine‐3‐ylidenes in Phosphorescent Platinum(II) Complexes. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Johannes Soellner
- Physikalische Organische ChemieTechnische Universität Dresden 01069 Dresden Germany
| | - Thomas Strassner
- Physikalische Organische ChemieTechnische Universität Dresden 01069 Dresden Germany
| |
Collapse
|
21
|
Topchiy MA, Ageshina AA, Chesnokov GA, Sterligov GK, Rzhevskiy SA, Gribanov PS, Osipov SN, Nechaev MS, Asachenko AF. Alkynyl‐ or Azido‐Functionalized 1,2,3‐Triazoles: Selective MonoCuAAC Promoted by Physical Factors. ChemistrySelect 2019. [DOI: 10.1002/slct.201902135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Alexandra A. Ageshina
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Gleb A. Chesnokov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Grigorii K. Sterligov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Sergey A. Rzhevskiy
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
| | - Pavel S. Gribanov
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences 28 Vavilov str. 119991 Moscow Russian Federation
| | - Mikhail S. Nechaev
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of Sciences 29 Leninsky Prospect 119991 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University, 1/3 Leninskie gory 119991 Moscow Russian Federation
| |
Collapse
|
22
|
Soellner J, Strassner T. Cyclometalated Platinum(II) Complexes with Mesoionic Dibenzofuranyl‐1,2,3‐triazol‐4‐ylidene Ligands: Synthesis, Characterization and Photophysical Properties. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Johannes Soellner
- Physikalische Organische ChemieTechnische Universität Dresden 01069 Dresden Germany) Fax: (+49)351-463-39679
| | - Thomas Strassner
- Physikalische Organische ChemieTechnische Universität Dresden 01069 Dresden Germany) Fax: (+49)351-463-39679
| |
Collapse
|
23
|
Amini M, Salmani S, Gautam S, Chae KH. Preparation and investigation of copper–manganese mixed oxides as a high-efficiency catalyst for the azide-alkyne 1,3-dipolar cycloaddition reaction. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Soellner J, Strassner T. Phosphorescent Cyclometalated Platinum(II) aNHC Complexes. Chemistry 2018; 24:15603-15612. [PMID: 30216572 DOI: 10.1002/chem.201802725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Indexed: 02/05/2023]
Abstract
The synthesis and characterization of the first bidentate C^C* cyclometalated platinum(II) complexes based on abnormal N-heterocyclic carbenes (aNHC) is presented. The aNHC ligand precursors are prepared from benzonitriles and anilines to form 1,2,3-trisubstituted imidazolium salts. The title compounds were synthesized by in situ generation of the silver carbene complex, followed by transmetalation to platinum and subsequent introduction of the β-diketonate ligand. Structural characterization by 2D NMR experiments, as well as solid-state structures unequivocally prove the abnormal binding mode of the aNHC ligands. Additionally, the photophysical properties of the platinum(II) complexes were examined and studied in detail by DFT calculations and cyclic voltammetry experiments. The title compounds proved to be strongly emissive at room temperature in the green to orange region of the visible spectrum, with emission efficiencies of up to 69 %.
Collapse
Affiliation(s)
- Johannes Soellner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069, Dresden, Germany), Fax: (+49) 351-463-39679
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069, Dresden, Germany), Fax: (+49) 351-463-39679
| |
Collapse
|
25
|
Wu Q, Pan L, Du G, Zhang C, Wang D. Preparation of pyridyltriazole ruthenium complexes as effective catalysts for the selective alkylation and one-pot C–H hydroxylation of 2-oxindole with alcohols and mechanism exploration. Org Chem Front 2018. [DOI: 10.1039/c8qo00725j] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pyridyltriazole-ligated ruthenium(ii) complexes have been designed and synthesized, which were characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Qiang Wu
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Le Pan
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
| | - Guangming Du
- Chemical Engineering College
- Xinjiang Agricultural University
- Urumqi 830052
- China
| | - Chi Zhang
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Dawei Wang
- The Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|