1
|
Wu S, Stanley PM, Deger SN, Hussain MZ, Jentys A, Warnan J. Photochargeable Mn-Based Metal-Organic Framework and Decoupled Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202406385. [PMID: 39074974 DOI: 10.1002/anie.202406385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 07/31/2024]
Abstract
Designing multifunctional materials that mimic the light-dark decoupling of natural photosynthesis is a key challenge in the field of energy conversion. Herein, we introduce MnBr-253, a precious metal-free metal-organic framework (MOF) built on Al nodes, bipyridine linkers and MnBr(CO)3(bipyridine) complexes. Upon irradiation, MnBr-253 colloids demonstrate an electron photocharging capacity of ~42 C ⋅ g-1 MOF, with state-of-the-art photocharging rate (1.28 C ⋅ s-1 ⋅ g-1 MOF) and incident photon-to-electron conversion efficiency of ~9.4 % at 450 nm. Spectroscopic and computational studies support effective electron accumulation at the Mn complex while high porosity and Mn loading account for the notable electron storage performance. The charged MnBr-253 powders were successfully applied for hydrogen evolution under dark conditions thus emulating the light-decoupled reactivity of photosynthesis.
Collapse
Affiliation(s)
- Shufan Wu
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Simon N Deger
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Mian Zahid Hussain
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Jentys
- Chair of Industrial Chemistry and Heterogenous Catalysis, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
2
|
Fan G, Corbin N, Chung M, Gill TM, Moore EB, Karbelkar AA, Furst AL. Highly Efficient Carbon Dioxide Electroreduction via DNA-Directed Catalyst Immobilization. JACS AU 2024; 4:1413-1421. [PMID: 38665653 PMCID: PMC11040669 DOI: 10.1021/jacsau.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2) is a promising route to up-convert this industrial byproduct. However, to perform this reaction with a small-molecule catalyst, the catalyst must be proximal to an electrode surface. Efforts to immobilize molecular catalysts on electrodes have been stymied by the need to optimize the immobilization chemistries on a case-by-case basis. Taking inspiration from nature, we applied DNA as a molecular-scale "Velcro" to investigate the tethering of three porphyrin-based catalysts to electrodes. This tethering strategy improved both the stability of the catalysts and their Faradaic efficiencies (FEs). DNA-catalyst conjugates were immobilized on screen-printed carbon and carbon paper electrodes via DNA hybridization with nearly 100% efficiency. Following immobilization, a higher catalyst stability at relevant potentials is observed. Additionally, lower overpotentials are required for the generation of carbon monoxide (CO). Finally, high FE for CO generation was observed with the DNA-immobilized catalysts as compared to the unmodified small-molecule systems, as high as 79.1% FE for CO at -0.95 V vs SHE using a DNA-tethered catalyst. This work demonstrates the potential of DNA "Velcro" as a powerful strategy for catalyst immobilization. Here, we demonstrated improved catalytic characteristics of molecular catalysts for CO2 valorization, but this strategy is anticipated to be generalizable to any reaction that proceeds in aqueous solutions.
Collapse
Affiliation(s)
- Gang Fan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nathan Corbin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Minju Chung
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas M. Gill
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Evan B. Moore
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Amruta A. Karbelkar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Suzuki TM, Nagatsuka K, Nonaka T, Yamaguchi Y, Sakamoto N, Uyama T, Sekizawa K, Kudo A, Morikawa T. Highly selective CO 2 electrolysis in aqueous media by a water-soluble cobalt dimethyl-bipyridine complex. Chem Commun (Camb) 2023; 59:12318-12321. [PMID: 37753608 DOI: 10.1039/d3cc03940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A water-soluble Co complex with dimethyl-bipyridine ligands reduced CO2 to CO electrochemically with almost 100% selectivity at -0.80 V vs. NHE in an aqueous medium (pH 6.8) without an organic solvent. The reaction overpotential was 270 mV. A possible CO formation mechanism was discussed based on experiments and calculations.
Collapse
Affiliation(s)
- Tomiko M Suzuki
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
| | - Kengo Nagatsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Takamasa Nonaka
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
| | - Yuichi Yamaguchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Naonari Sakamoto
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
| | - Takeshi Uyama
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
| | - Keita Sekizawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Carbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Takeshi Morikawa
- Toyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.
| |
Collapse
|
4
|
Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022; 61:e202205301. [DOI: 10.1002/anie.202205301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 01/03/2023]
|
5
|
Shipp J, Parker S, Spall S, Peralta-Arriaga SL, Robertson CC, Chekulaev D, Portius P, Turega S, Buckley A, Rothman R, Weinstein JA. Photocatalytic Reduction of CO 2 to CO in Aqueous Solution under Red-Light Irradiation by a Zn-Porphyrin-Sensitized Mn(I) Catalyst. Inorg Chem 2022; 61:13281-13292. [PMID: 35960651 PMCID: PMC9446891 DOI: 10.1021/acs.inorgchem.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This work demonstrates photocatalytic CO2 reduction
by a noble-metal-free photosensitizer-catalyst system in aqueous solution
under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine
complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography,
and shown to reduce CO2 to CO following photosensitization
by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride
[Zn(TMPyP)]Cl4 (2) under 625 nm irradiation.
This is the first example of 2 employed as a photosensitizer
for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising
the electronic properties of the catalyst. The photostability of the
active Mn(I) catalyst over prolonged periods of irradiation with red
light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous
photocatalyst, working in water and under red light, illustrates further
future prospects of intrinsically photounstable Mn(I) complexes as
solar-driven catalysts in an aqueous environment. A Mn(I) bipyridyl tricarbonyl complex,
where the diimine
ligand is functionalized with water-solubilizing phosphonate ester
groups, has been prepared and is shown to catalytically convert CO2 to CO in aqueous solution following photosensitization from
a water-soluble Zn(II) porphyrin under red-light irradiation.
Collapse
Affiliation(s)
- James Shipp
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Parker
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Steven Spall
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Peter Portius
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Turega
- Department of Chemistry, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Alastair Buckley
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Rachael Rothman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
6
|
Yang ZW, Chen JM, Qiu LQ, Xie WJ, He LN. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhi-Wen Yang
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Jin-Mei Chen
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Li-Qi Qiu
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Wen-Jun Xie
- Nankai University College of Chemistry Inst. Elemento-Org. Chem. CHINA
| | - Liang-Nian He
- Nankai University College of Chemistry Institute of Elemento-Organic Chemistry Weijin Rd. 94 300071 Tianjin CHINA
| |
Collapse
|
7
|
Siritanaratkul B, Eagle C, Cowan AJ. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO 2 Reduction in Water and Organic Solvents. Acc Chem Res 2022; 55:955-965. [PMID: 35285618 PMCID: PMC9007415 DOI: 10.1021/acs.accounts.1c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The electrochemical
reduction
of CO2 provides a way
to sustainably generate carbon-based fuels and feedstocks. Molecular
CO2 reduction electrocatalysts provide tunable reaction
centers offering an approach to control the selectivity of catalysis.
Manganese carbonyl complexes, based on [Mn(bpy)(CO)3Br]
and its derivatives (bpy = 2,2′-bipyridine), are particularly
interesting due to their ease of synthesis and the use of a first-row
earth-abundant transition metal. [Mn(bpy)(CO)3Br] was first
shown to be an active and selective catalyst for reducing CO2 to CO in organic solvents in 2011. Since then, manganese carbonyl
catalysts have been widely studied with numerous reports of their
use as electrocatalysts and photocatalysts and studies of their mechanism. This class of Mn catalysts only shows CO2 reduction
activity with the addition of weak Brønsted acids. Perhaps surprisingly,
early reports showed increased turnover frequencies as the acid strength
is increased without a loss in selectivity toward CO evolution. It
may have been expected that the competing hydrogen evolution
reaction could have led to lower selectivity. Inspired by these works
we began to explore if the catalyst would work in protic solvents,
namely, water, and to explore the pH range over which it can operate.
Here we describe the early studies from our laboratory that first
demonstrated the use of manganese carbonyl complexes in water and
then go on to discuss wider developments on the use of these catalysts
in water, highlighting their potential as catalysts for use in aqueous
CO2 electrolyzers. Key to the excellent selectivity
of these catalysts in the presence
of Brønsted acids is a proton-assisted CO2 binding
mechanism, where for the acids widely studied, lower pKa values actually favor CO2 binding over Mn–H
formation, a precursor to H2 evolution. Here we discuss
the wider literature before focusing on our own contributions in validating
this previously proposed mechanism through the use of vibrational
sum frequency generation (VSFG) spectroelectrochemistry. This allowed
us to study [Mn(bpy)(CO)3Br] while it is at, or near, the
electrode surface, which provided a way to identify new catalytic
intermediates and also confirm that proton-assisted CO2 binding operates in both the “dimer” and primary (via
[Mn(bpy)(CO)3]−) pathways. Understanding
the mechanism of how these highly selective catalysts operate is important
as we propose that the Mn complexes will be valuable models to guide
the development of new proton/acid tolerant CO2 reduction
catalysts.
Collapse
Affiliation(s)
- Bhavin Siritanaratkul
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Catherine Eagle
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Alexander J. Cowan
- Stephenson Institute for Renewable Energy and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, U.K
| |
Collapse
|
8
|
Barrett JA, Li Z, Garcia JV, Wein E, Zheng D, Hunt C, Ngo L, Sepunaru L, Iretskii AV, Ford PC. Redox-mediated carbon monoxide release from a manganese carbonyl-implications for physiological CO delivery by CO releasing moieties. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211022. [PMID: 34804570 PMCID: PMC8580448 DOI: 10.1098/rsos.211022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2-, (A, bpCO2 2- = 2,2'-bipyridine-4,4'-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.
Collapse
Affiliation(s)
- Jacob A. Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Zhi Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John V. Garcia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Emily Wein
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Dongyun Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Camden Hunt
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Loc Ngo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Alexei V. Iretskii
- Department of Chemistry and Environmental Sciences, Lake Superior State University, Sault Sainte Marie, MI 49783, USA
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
9
|
Wang X, Chin AL, Zhou J, Wang H, Tong R. Resilient Poly(α-hydroxy acids) with Improved Strength and Ductility via Scalable Stereosequence-Controlled Polymerization. J Am Chem Soc 2021; 143:16813-16823. [PMID: 34582185 DOI: 10.1021/jacs.1c08802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite the degradability and biocompatibility of poly(α-hydroxy acids), their utility remains limited because their thermal and mechanical properties are inferior to those of commodity polyolefins, which can be attributed to the lack of side-chain functionality on the polyester backbone. Attempts to synthesize high-molecular-weight functionalized poly(α-hydroxy acids) from O-carboxyanhydrides have been hampered by scalability problems arising from the need for an external energy source such as light or electricity. Herein, we report an operationally simple, scalable method for the synthesis of stereoregular, high-molecular-weight (>200 kDa) functionalized poly(α-hydroxy acids) by means of controlled ring-opening polymerization of O-carboxyanhydrides mediated by a highly redox reactive manganese complex and a zinc-alkoxide. Mechanistic studies indicated that the ring-opening process likely proceeded via the Mn-mediated decarboxylation with alkoxy radical formation. Gradient copolymers produced directly by this method from mixtures of two O-carboxyanhydrides exhibited better ductility and toughness than their corresponding homopolymers and block copolymers, therefore highlighting the potential feasibility of functionalized poly(α-hydroxy acids) as ductile and resilient polymeric materials.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Ai Lin Chin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Jingyi Zhou
- Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 60801, United States
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 60801, United States
| | - Rong Tong
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Kholin KV, Khrizanforov MN, Babaev VM, Nizameeva GR, Minzanova ST, Kadirov MK, Budnikova YH. A Water-Soluble Sodium Pectate Complex with Copper as an Electrochemical Catalyst for Carbon Dioxide Reduction. Molecules 2021; 26:5524. [PMID: 34576996 PMCID: PMC8470637 DOI: 10.3390/molecules26185524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
A selective noble-metal-free molecular catalyst has emerged as a fruitful approach in the quest for designing efficient and stable catalytic materials for CO2 reduction. In this work, we report that a sodium pectate complex of copper (PG-NaCu) proved to be highly active in the electrocatalytic conversion of CO2 to CH4 in water. Stability and selectivity of conversion of CO2 to CH4 as a product at a glassy carbon electrode were discovered. The copper complex PG-NaCu was synthesized and characterized by physicochemical methods. The electrochemical CO2 reduction reaction (CO2RR) proceeds at -1.5 V vs. Ag/AgCl at ~10 mA/cm2 current densities in the presence of the catalyst. The current density decreases by less than 20% within 12 h of electrolysis (the main decrease occurs in the first 3 h of electrolysis in the presence of CO2). This copper pectate complex (PG-NaCu) combines the advantages of heterogeneous and homogeneous catalysts, the stability of heterogeneous solid materials and the performance (high activity and selectivity) of molecular catalysts.
Collapse
Affiliation(s)
- Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
- Department of Nanotechnology in Electronics, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Guliya R. Nizameeva
- Department of Physics, Kazan National Research Technological University, 420015 Kazan, Russia;
| | - Salima T. Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Marsil K. Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
| | - Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia; (M.N.K.); (V.M.B.); (S.T.M.); (M.K.K.); (Y.H.B.)
- Department of Physics, Kazan National Research Technological University, 420015 Kazan, Russia;
| |
Collapse
|
11
|
Marchi RC, Aguiar I, Camilo MR, Braga AH, Do Nascimento ESP, Santana VT, Nascimento OR, Carlos RM. Photochemical Properties of a Mononuclear Mn(I) Triscarbonyl Complex in Water: An Insight into Different Oxidation States. ChemistrySelect 2021. [DOI: 10.1002/slct.202102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rafael C. Marchi
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Inara Aguiar
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Mariana R. Camilo
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Adriano H. Braga
- Chemical Engineering Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Eduardo S. P. Do Nascimento
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| | - Vinicius T. Santana
- Physics Institute Universidade de São Paulo-EECC Av. Trabalhador São Carlense São Carlos-SP 13560-970 Brazil
| | - Otaciro R. Nascimento
- Physics Institute Universidade de São Paulo-EECC Av. Trabalhador São Carlense São Carlos-SP 13560-970 Brazil
| | - Rose M. Carlos
- Chemistry Department Universidade Federal de São Carlos - UFSCar. Rod. Washington Luis São Carlos SP 13565-905 Brazil
| |
Collapse
|
12
|
Dubed Bandomo GC, Mondal SS, Franco F, Bucci A, Martin-Diaconescu V, Ortuño MA, van Langevelde PH, Shafir A, López N, Lloret-Fillol J. Mechanically Constrained Catalytic Mn(CO) 3Br Single Sites in a Two-Dimensional Covalent Organic Framework for CO 2 Electroreduction in H 2O. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Geyla C. Dubed Bandomo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Suvendu Sekhar Mondal
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Federico Franco
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Alberto Bucci
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Vlad Martin-Diaconescu
- ALBA Synchrotron Light Source, Carretera BP 1413, Km. 3.3, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Manuel A. Ortuño
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Phebe H. van Langevelde
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Alexandr Shafir
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
13
|
Kinzel NW, Werlé C, Leitner W. Transition Metal Complexes as Catalysts for the Electroconversion of CO 2 : An Organometallic Perspective. Angew Chem Int Ed Engl 2021; 60:11628-11686. [PMID: 33464678 PMCID: PMC8248444 DOI: 10.1002/anie.202006988] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Indexed: 12/17/2022]
Abstract
The electrocatalytic transformation of carbon dioxide has been a topic of interest in the field of CO2 utilization for a long time. Recently, the area has seen increasing dynamics as an alternative strategy to catalytic hydrogenation for CO2 reduction. While many studies focus on the direct electron transfer to the CO2 molecule at the electrode material, molecular transition metal complexes in solution offer the possibility to act as catalysts for the electron transfer. C1 compounds such as carbon monoxide, formate, and methanol are often targeted as the main products, but more elaborate transformations are also possible within the coordination sphere of the metal center. This perspective article will cover selected examples to illustrate and categorize the currently favored mechanisms for the electrochemically induced transformation of CO2 promoted by homogeneous transition metal complexes. The insights will be corroborated with the concepts and elementary steps of organometallic catalysis to derive potential strategies to broaden the molecular diversity of possible products.
Collapse
Affiliation(s)
- Niklas W. Kinzel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
14
|
Barrett JA, Miller CJ, Kubiak CP. Electrochemical Reduction of CO2 Using Group VII Metal Catalysts. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Kinzel NW, Werlé C, Leitner W. Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO
2
– eine metallorganische Perspektive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006988] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Niklas W. Kinzel
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| | - Christophe Werlé
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Walter Leitner
- Max-Planck-Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Deutschland
| |
Collapse
|
16
|
Mandal SC, Pathak B. Computational insights into electrocatalytic CO2 reduction facilitated by Mn(I) half sandwich-based catalysts: Role of substitution and solvent. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Sconyers DJ, Shaughnessy CI, Lee HJ, Subramaniam B, Leonard KC, Blakemore JD. Enhancing Molecular Electrocatalysis of CO 2 Reduction with Pressure-Tunable CO 2 -Expanded Electrolytes. CHEMSUSCHEM 2020; 13:6338-6345. [PMID: 32196939 DOI: 10.1002/cssc.202000390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Indexed: 06/10/2023]
Abstract
Electrochemical studies of CO2 conversion by molecular catalysts are typically carried out in a narrow range of near-ambient CO2 pressures wherein low CO2 solubilities in the liquid phase can limit the rate of CO2 reduction. In this study, five-fold rate enhancements are enabled by pairing CO2 -expanded electrolytes (CXEs), a class of media that accommodate multimolar concentrations of CO2 in organic solvents at modest pressures, with a homogeneous molecular electrocatalyst, [Re(CO)3 (bpy)Cl] (1, bpy=2,2'-bipyridyl). Analysis of cyclic voltammetry data reveals pressure-tunable rate behavior, with first-order kinetics at moderate CO2 pressures giving way to zero-order kinetics at higher pressures. The significant enhancement in the space-time yield of CO demonstrates that CXEs offer a simple yet powerful strategy for unlocking the intrinsic potential of molecular catalysts by mitigating CO2 solubility limitations commonly encountered in conventional liquid electrolytes. Moreover, our findings reveal that 1, a workhorse molecular catalyst, performs with intrinsic kinetic behavior, which is competitive with fast enzymes under optimal conditions in CXEs.
Collapse
Affiliation(s)
- David J Sconyers
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, USA
| | - Charles I Shaughnessy
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas, 66045, USA
| | - Hyun-Jin Lee
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas, 66045, USA
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W 15th Street, Lawrence, Kansas, 66045, USA
| | - James D Blakemore
- Center for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas, 66045, USA
| |
Collapse
|
18
|
Mukherjee J, Siewert I. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO
2
Reduction Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jyotima Mukherjee
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Inke Siewert
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
19
|
Rotundo L, Polyansky DE, Gobetto R, Grills DC, Fujita E, Nervi C, Manbeck GF. Molecular Catalysts with Intramolecular Re-O Bond for Electrochemical Reduction of Carbon Dioxide. Inorg Chem 2020; 59:12187-12199. [PMID: 32804491 PMCID: PMC8009525 DOI: 10.1021/acs.inorgchem.0c01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
A new Re bipyridine-type complex,
namely, fac-Re(pmbpy)(CO)3Cl (pmbpy =
4-phenyl-6-(2-hydroxy-phenyl)-2,2′-bipyridine), 1, carrying a single OH moiety as local proton source, has
been synthesized, and its electrochemical behavior under Ar and under
CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the
proximity of Cl to OH and 1-trans, are
identified. The interconversion between 1-cis and 1-trans is clarified by DFT calculations,
which reveal two transition states. The energetically lower pathway
displays a non-negligible barrier of 75.5 kJ mol–1. The 1e– electrochemical reduction of 1 affords the neutral intermediate 1-OPh, formally derived
by reductive deprotonation and loss of Cl– from 1. 1-OPh, which exhibits an entropically favored
intramolecular Re–O bond, has been isolated and characterized.
The detailed electrochemical mechanism is demonstrated by combined
chemical reactivity, spectroelectrochemistry, spectroscopic (IR and
NMR), and computational (DFT) approaches. Comparison with previous
Re and Mn derivatives carrying local proton sources highlights that
the catalytic activity of Re complexes is more sensitive to the presence
of local OH groups. Similar to Re-2OH (2OH = 4-phenyl-6-(phenyl-2,6-diol)-2,2′-bipyridine), 1 and Mn-1OH display a selective reduction of
CO2 to CO. In the case of the Re bipyridine-type complex,
the formation of a relatively stable Re–O bond and a preference
for phenolate-based reactivity with CO2 slightly inhibit
the electrocatalytic reduction of CO2 to CO, resulting
in a low TON value of 9, even in the presence of phenol as a proton
source. A new Re bipyridine-type complex, namely, fac-Re(pmbpy)(CO)3Cl (pmbpy = 4-phenyl-6-(2-hydroxy-phenyl)-2,2′-bipyridine), 1, carrying a single OH moiety as local proton source, has
been synthesized, and its electrochemical behavior under Ar and under
CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the
proximity of Cl to OH and 1-trans, are
identified.
Collapse
Affiliation(s)
- Laura Rotundo
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Roberto Gobetto
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carlo Nervi
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
20
|
Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Henke WC, Otolski CJ, Moore WNG, Elles CG, Blakemore JD. Ultrafast Spectroscopy of [Mn(CO) 3] Complexes: Tuning the Kinetics of Light-Driven CO Release and Solvent Binding. Inorg Chem 2020; 59:2178-2187. [PMID: 31990533 DOI: 10.1021/acs.inorgchem.9b02758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Manganese tricarbonyl complexes are promising catalysts for CO2 reduction, but complexes in this family are often photosensitive and decompose rapidly upon exposure to visible light. In this report, synthetic and photochemical studies probe the initial steps of light-driven speciation for Mn(CO)3(Rbpy)Br complexes bearing a range of 4,4'-disubstituted 2,2'-bipyridyl ligands (Rbpy, where R = tBu, H, CF3, NO2). Transient absorption spectroscopy measurements for Mn(CO)3(Rbpy)Br coordination compounds with R = tBu, H, and CF3 in acetonitrile reveal ultrafast loss of a CO ligand on the femtosecond time scale, followed by solvent coordination on the picosecond time scale. The Mn(CO)3(NO2bpy)Br complex is unique among the four compounds in having a longer-lived excited state that does not undergo CO release or subsequent solvent coordination. The kinetics of photolysis and solvent coordination for light-sensitive complexes depend on the electronic properties of the disubstituted bipyridyl ligand. The results indicate that both metal-to-ligand charge-transfer (MLCT) and dissociative ligand-field (d-d) excited states play a role in the ultrafast photochemistry. Taken together, the findings suggest that more robust catalysts could be prepared with appropriately designed complexes that avoid crossing between the excited states that drive photochemical CO loss.
Collapse
Affiliation(s)
- Wade C Henke
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - Christopher J Otolski
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - William N G Moore
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - Christopher G Elles
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| | - James D Blakemore
- Department of Chemistry , University of Kansas , 1567 Irving Hill Road , Lawrence , Kansas 66045-7582 , United States
| |
Collapse
|
22
|
Franco F, Rettenmaier C, Jeon HS, Roldan Cuenya B. Transition metal-based catalysts for the electrochemical CO2 reduction: from atoms and molecules to nanostructured materials. Chem Soc Rev 2020; 49:6884-6946. [DOI: 10.1039/d0cs00835d] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An overview of the main strategies for the rational design of transition metal-based catalysts for the electrochemical conversion of CO2, ranging from molecular systems to single-atom and nanostructured catalysts.
Collapse
Affiliation(s)
- Federico Franco
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Clara Rettenmaier
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Hyo Sang Jeon
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science
- Fritz-Haber Institute of the Max Planck Society
- 14195 Berlin
- Germany
| |
Collapse
|
23
|
Neri G, Donaldson PM, Cowan AJ. In situ study of the low overpotential "dimer pathway" for electrocatalytic carbon dioxide reduction by manganese carbonyl complexes. Phys Chem Chem Phys 2019; 21:7389-7397. [PMID: 30906938 DOI: 10.1039/c9cp00504h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The electrocatalytic reduction of CO2 using [fac-Mn(bpy)(CO)3Br] (bpy = 2,2'-bipyridine) and its derivatives has been the subject of numerous recent studies. However the mechanisms of catalysis are still debated. Here we carry out in situ vibrational sum-frequency generation (VSFG) spectroelectrochemistry to examine how this catalyst behaves at an electrode surface. In particular, a low overpotential pathway involving a dimeric manganese has been reported in several studies using substituted bipyridine ligands. Here, we find that the "dimer pathway" can also occur with the unsubstuituted bipyridine complexes. Specifically we can observe spectroscopic evidence of the interaction between [Mn2(bpy)2(CO)6] with CO2 in the presence of a suitable acid. Detailed VSFG studies of [Mn2(bpy)2(CO)6], including of the potential dependence of the surface ν(CO) mode, allow us to construct a model of how it accumulates and behaves at the electrode surface under potentiostatic control.
Collapse
Affiliation(s)
- Gaia Neri
- Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZD, Liverpool, UK.
| | | | | |
Collapse
|