1
|
Veerapathiran S, Muduli G, Rawat A, Siddhant K, Singh J, Matsumoto K, Tsutsumi O, Prabusankar G. Organo Chalcogenone-Triggered Luminescent Copper(I) Clusters for Light Emitting Applications. Inorg Chem 2024; 63:12708-12720. [PMID: 38943619 DOI: 10.1021/acs.inorgchem.3c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
A novel organo sulfur and selenium-controlled emission behavior in discrete copper(I) clusters has been demonstrated for the first time. The pentanuclear [Cu5Br5(L1)2] (1), trinuclear [Cu3Br3(L2)2] (2), dinuclear [Cu2I2(L1)2] (3), and tetranuclear [Cu4I4(L2)2CH3CN] (4) copper(I) discrete clusters have been synthesized from the reaction between L1 [L1 = 1-isopropyl-3-(pyridin-2-yl)-imidazol-2-thione] or L2 [L2 = 1-isopropyl-3-(pyridin-2-yl)-imidazol-2-selone] chelating ligands and corresponding copper(I) halide salts. These new clusters have been characterized by FT-IR, UV-visible, thermogravimetric analysis, and fluorescence spectroscopy techniques. Single-crystal X-ray diffraction studies reveal that 1-4 consists of abundant d10-d10 interactions. The structural and bonding features of clusters have been investigated using density functional theory calculations. Notably, the L2-ligated 2 and 4 are poorly emissive, while L1-ligated 1 and 3 showed strong emission in the orange and green regions, respectively. The time-dependent density functional theory natural transition orbital calculations of 1 and 3 reveal the nature of the transitions contributed by 3MLCT/3LLCT/3ILCT. Photoluminescence quantum yields of 1 and 3 are 19 and 11%, with average lifetimes of 21.55 and 6.57 μs, respectively. 1 and 3 were coated on prototype LED bulbs for light-emitting performance.
Collapse
Affiliation(s)
- Sabari Veerapathiran
- Organometallics and Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Gopendra Muduli
- Organometallics and Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Arushi Rawat
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kumar Siddhant
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Joginder Singh
- Organometallics and Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Kohsuke Matsumoto
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Ganesan Prabusankar
- Organometallics and Materials Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| |
Collapse
|
2
|
Chiacchio MA, Legnani L. Density Functional Theory Calculations: A Useful Tool to Investigate Mechanisms of 1,3-Dipolar Cycloaddition Reactions. Int J Mol Sci 2024; 25:1298. [PMID: 38279298 PMCID: PMC10816517 DOI: 10.3390/ijms25021298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
The present review contains a representative sampling of mechanistic studies, which have appeared in the literature in the last 5 years, on 1,3-dipolar cycloaddition reactions, using DFT calculations. Attention is focused on the mechanistic insights into 1,3-dipoles of propargyl/allenyl type and allyl type such as aza-ylides, nitrile oxides and azomethyne ylides and nitrones, respectively. The important role played by various metal-chiral-ligand complexes and the use of chiral eductors in promoting the site-, regio-, diastereo- and enatioselectivity of the reaction are also outlined.
Collapse
Affiliation(s)
- Maria Assunta Chiacchio
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Legnani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
3
|
Das B, Sahoo AK, Banjare SK, Panda SJ, Purohit CS, Doddi A. Dicationic copper(I) complexes bearing ENE (E = S, Se) pincer ligands; catalytic applications in regioselective cyclization of 1,6-diynes. Dalton Trans 2023; 52:16151-16158. [PMID: 37603440 DOI: 10.1039/d3dt01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Two novel dicationic binuclear Cu(I) complexes of the type [{(BPPP)E2}Cu]2[BF4]2 (E = S (3a); Se (3b)) bearing (BPPP)E2 (BPPP = bis(diphenylphosphino)pyridine) pincer systems were isolated, and structurally characterized. The solid-state structures of 3a/3b display the presence of intermolecular cuprophilic (Cu⋯Cu) interactions between the two monocationic species, and consist of weak Cu⋯S bonding between the two cations. Besides, complex 3a was introduced as a molecular copper(I) catalyst in cyclization reactions, and new protocols were developed for the synthesis of a series of new oxazole and triazole derivatives bearing alkyne-phenyl propargylic ether substituents. 3a was also found to be active in achieving these two classes of heterocyclic compounds by the mechanical grinding method. One of the key intermediate copper-azide species was detected by the high-resolution mass spectrometry technique, which supports the proposed catalytic pathway. All the reported transformations were accomplished sustainably by employing a well-defined, earth-abundant, and cheap copper(I) catalytic system.
Collapse
Affiliation(s)
- Bhagyashree Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| | - Amiya Kumar Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| | - Shyam Kumar Banjare
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Adinarayana Doddi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Industrial Training Institute (ITI), Engineering School Road, Ganjam, 760010, Odisha, India.
| |
Collapse
|
4
|
Sahoo AK, Kumar Sahoo A, Das B, Panda SJ, Purohit CS, Doddi A. New cationic coinage metal complexes featuring silyl group functionalized phosphine: syntheses, structures and catalytic studies in alkyne-azide cycloaddition reactions. Dalton Trans 2023; 52:15549-15561. [PMID: 37753593 DOI: 10.1039/d3dt01692g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
A series of coinage metal complexes bearing rarely explored ortho-silylated phosphine is reported. The treatment of diphenyl(2-(trimethylsilyl)phenyl)phosphine (1) with CuCl and [Cu(CH3CN)4]BF4 furnished the corresponding neutral [(1)CuCl]2 (2) and mono-cationic [(1)2Cu(CH3CN)]BF4 (3) complexes, respectively. The reactions of 1 with AgX (X = BF4-, NO3-) in 2 : 1 ratio furnished the corresponding mono cationic dicoordinate silver(I) complexes of the type [(1)2Ag]X (X = BF4- (4a), NO3- (4b)). The ortho-silylated phosphine ligand (1) was conveniently converted into the corresponding sulfide (5a) and selenide (5b) species, and their reactions with [Cu(CH3CN)4]BF4 yielded mono-cationic, homoleptic tris(silylphosphinochalcogenide)copper(I) complexes of the type [(5a/5b)3Cu]BF4 (6a/6b). The molecular structures of 2-4 and 6 were established by single-crystal X-ray diffraction analysis. The copper complexes 2, 3, and 6a were employed as catalysts in azide-alkyne cycloaddition reactions. Among these complexes, 3 was extensively used in the preparation of various mono- and bis-triazoles consisting of tolyl, benzyl, carbazolyl, and propargylic ether groups. Three sets of substituted triazole derivatives were achieved under mild conditions by employing copper(I) catalytic systems. The mechanistic studies indicated the formation of a heteroleptic copper(I) triazolide intermediate which was detected by high-resolution mass spectral analysis.
Collapse
Affiliation(s)
- Amiya Kumar Sahoo
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| | - Ashish Kumar Sahoo
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| | - Bhagyashree Das
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
| | - Adinarayana Doddi
- Department of Chemical Sciences; Indian Institute of Science Education and Research Berhampur; Transit Campus, Industrial Training Institute (ITI); Engineering School Road, Ganjam, Odisha, 760010, India.
| |
Collapse
|
5
|
González-Lainez M, Gallegos M, Munarriz J, Azpiroz R, Passarelli V, Jiménez MV, Pérez-Torrente JJ. Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) by Functionalized NHC-Based Polynuclear Catalysts: Scope and Mechanistic Insights. Organometallics 2022; 41:2154-2169. [PMID: 35971402 PMCID: PMC9374069 DOI: 10.1021/acs.organomet.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 12/02/2022]
Abstract
![]()
Copper(I) [Cu2(μ-Br)2(tBuImCH2pyCH2L)]n (L = OMe,
NEt2, NHtBu) compounds supported by flexible
functionalized NHC-based polydentate ligands have been prepared in
a one-pot procedure by reacting the corresponding imidazolium salt
with an excess of copper powder and Ag2O. An X-ray diffraction
analysis has revealed that
[Cu2(μ-Br)2(tBuImCH2pyCH2NEt2)]n is
a linear coordination polymer formed by bimetallic [Cu(μ-Br)]2 units linked by the lutidine-based NHC-py-NEt2 ligand, which acts as a heteroditopic ligand with a 1κC-2κ2N,N′ coordination
mode. We propose that the polymeric compounds break down in the solution
into more compact tetranuclear [Cu2(μ-Br)2(tBuImCH2pyCH2L)]2 compounds
with a coordination mode identical to the functionalized NHC ligands.
These compounds have been found to exhibit high catalytic activity
in the Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction.
In particular, [Cu2(μ-Br)2(tBuImCH2pyCH2NEt2)]2 efficiently
catalyzes the click reaction of a range of azides and alkynes, under
an inert atmosphere at room temperature in neat conditions at a very
low catalyst loading, to quantitatively afford the corresponding 1,4-disubstituted
1,2,3-triazole derivatives in a few minutes. The cycloaddition reaction
of benzyl azide to phenylacetylene can be performed at 25–50
ppm catalyst loading by increasing the reaction time and/or temperature.
Reactivity studies have shown that the activation of the polynuclear
catalyst precursor involves the alkyne deprotonation by the NHC moiety
of the polydentate ligand to afford a copper(I)-alkynyl species bearing
a functionalized imidazolium ligand. DFT calculations support the
participation of the dinuclear species [(CuBr)2(μ-tBuImCH2pyCH2NEt2)], resulting
from the fragmentation of the tetranuclear compound, as the catalytically
active species. The proposed reaction pathway proceeds through zwitterionic
dinuclear intermediates and entails the active participation of both
copper atoms, as well as the NHC moiety as an internal base, which
activates the reacting alkyne via deprotonation.
Collapse
Affiliation(s)
- Miguel González-Lainez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Miguel Gallegos
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julen Munarriz
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Ramón Azpiroz
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
6
|
Zhou Z, Yue Q, Zhao Y. A DFT Study on the Binuclear Copper(I)-Catalyzed Synthesis Mechanism of 1,2,3-Triazolo[1,5-c]Pyrimidine via Interrupted Click and Ketenimine Rearrangement. Chemphyschem 2021; 23:e202100751. [PMID: 34799971 DOI: 10.1002/cphc.202100751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Indexed: 11/06/2022]
Abstract
In this paper, the mechanism of the full catalytic cycle for binuclear Cu(I)-catalyzed sulfonyl azide-alkyne cycloaddition reaction for the synthesis of triazolopyrimidines was rationalized by density functional theoretical (DFT) calculations. The computed reaction route consists of: (a) formation of dicopper intermediates, including C-H activation of terminal alkyne, 3+2 ring cycloaddition and ring-reducing reaction and transmetalation, (b) interrupted CuAAC reaction, including di-copper catalyzed ring-opening of 2H-azirines and C-C bond formation to generate the copper-triazoles and -ketenimines, (c) two-step C-N cross-coupling and following (d) multi-step hydrogen transfer by the hydrogen bonding chain of water to promote the C-N formation and another C-N cleavage through the removal of p-tolyl sulfonamides. Our DFT results indicate that the multi-step hydrogen transfer process is the rate-determining step along the potential energy surface profile. The explicit water model was used for systematic determination of barrier for C-C cross-coupling, C-N bond formation and cleavage, and p-tolylsulfonamide removal. A critical insight in the interrupted CuAAC reaction was proposed. Further prediction interprets H2 O hydrogen bond chain plays an important role in C-N bond formation and cleavage, and the removal of p-tolylsulfonamide. This may have fundamental guidance on the design of 1, 5-herterocyclic functionalized triazolopyrimidines via interrupted CuAAC rearrangement reaction, as well as hydrogen bond chain of water.
Collapse
Affiliation(s)
- Zhaoman Zhou
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China.,Office of Academic Research, Guangxi Modern Polytechnic College, Hechi, 547000, China
| | - Qianqian Yue
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanying Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
7
|
Ferraro V, Sole R, Bortoluzzi M, Beghetto V, Castro J. Tris
‐isocyanide copper(I) complex enabling copper azide‐alkyne cycloaddition in neat conditions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valentina Ferraro
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
| | - Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venice Italy
- Consorzio Interuniversitario Reattività Chimica e Catalisi (CIRCC) Bari Italy
- Crossing srl Treviso Italy
| | - Jesús Castro
- Departamento de Química Inorgánica Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais Vigo Spain
| |
Collapse
|
8
|
Bahsis L, Ablouh E, Hachim ME, Anane H, Taourirte M, Julve M, Stiriba S. Copper(I)‐chitin biopolymer based: An efficient and recyclable catalyst for click azide–alkyne cycloaddition reactions in water. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lahoucine Bahsis
- Laboratoire de Chimie de Coordination et d'Analytique (LCCA), Département de Chimie, Faculté des Sciences d'El Jadida Université Chouaïb Doukkali El Jadida Morocco
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi Université Cadi Ayyad Safi Morocco
| | - El‐Houssaine Ablouh
- Materials Science and Nanoengineering Department (MSN) Mohammed VI Polytechnic University (UM6P) Ben Guerir Morocco
| | - Mouhi Eddine Hachim
- Équipe de Modélisation Moléculaire et de Spectroscopie, Faculté des sciences Université de Chouaïb Doukkali El Jadida Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi Université Cadi Ayyad Safi Morocco
| | - Moha Taourirte
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech Université Cadi Ayyad Marrakech Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol Universidad de Valencia Valencia Spain
| | | |
Collapse
|
9
|
Zhang X, Wang B, Lu Y, Xia C, Liu J. Homogeneous and noncovalent immobilization of NHC-Cu catalyzed azide-alkyne cycloaddition reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Yu F, Zhou Z, Song J, Zhao Y. DFT and AFIR study on the copper(i)-catalyzed mechanism of 5-enamine-trisubstituted-1,2,3-triazole synthesis via C-N cross-coupling and the origin of ring-opening of 2 H-azirines. RSC Adv 2021; 11:2744-2755. [PMID: 35424213 PMCID: PMC8693862 DOI: 10.1039/d0ra07498e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 12/04/2022] Open
Abstract
Understanding the synthesis mechanism of substituted 1,2,3-triazoles is an important and state-of-the-art research area of contemporary copper(i)-catalyzed terminal alkyne and organic azide click reaction (CuAAC), which has invoked increasing close collaborations between experiment and theory including copper catalyzed interrupted click reaction. In this study, the mechanism of Cu(i)-catalyzed 5-enamine-functionalized fully substituted 1,2,3-triazole synthesis was rationalized via density functional theory (DFT) and multicomponent artificial force-induced reaction (MC-AFIR) methods. The reasonable reaction route consists of (a) di-copper catalyzed ring-opening of 2H-azirines, (b) alkyne hydrogen atom transfer, (c) [3 + 2] ring cycloaddition, and (d) C-N bond formation through reductive elimination. The MC-AFIR method was used for the systematic determination of transition states for the C/N-Cu bond formation, C-N bond coupling and crossing points between singlet and triplet states. Our survey on the prereactant complexes suggested that the dicopper-catalyzed 2H-azirine ring-opening and alkyne hydrogen activation are both thermodynamically feasible via a singlet/triplet crossing point. This explains why Et3N is critical for alkyne hydrogen transfer (HT) before the [3 + 2] cycloaddition reaction, and the C-N cross-coupling product instead of the click product (byproduct). Our DFT results indicate that the transmetalation process is the rate determination step along the triplet state potential energy surface. This study provides important mechanistic insights for the interrupted CuAAC reaction to form 5-enamine-fully-substituted-1,2,3-triazoles. Further insight prediction interprets that solvent and extra strong ligand coordination play a certain role in competitive reactions.
Collapse
Affiliation(s)
- Fan Yu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Zhaoman Zhou
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jiajia Song
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Yanying Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University Hangzhou 310018 China
- State Key Laboratory of Advanced Textiles Materials and Manufacture Technology, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
11
|
Chakraborti G, Jana R, Mandal T, Datta A, Dash J. Prolinamide plays a key role in promoting copper-catalyzed cycloaddition of azides and alkynes in aqueous media via unprecedented metallacycle intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01150a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Room temperature copper-catalyzed cycloaddition of azides and alkynes (CuAAC) proceeds in the presence of a prolinamide ligand in aqueous media via unique metallacycles.
Collapse
Affiliation(s)
- Gargi Chakraborti
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajkumar Jana
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Tirtha Mandal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Ayan Datta
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Jyotirmayee Dash
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
12
|
Gan H, Peng L, Gu FL. Mechanistic understanding of the Cu( i)-catalyzed domino reaction constructing 1-aryl-1,2,3-triazole from electron-rich aryl bromide, alkyne, and sodium azide: a DFT study. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00123j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the Cu(i)-catalyzed domino reaction furnishing 1-aryl-1,2,3-triazole assisted by CuI and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is explored with density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Hanlin Gan
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 51006
| | - Liang Peng
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 51006
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry
- South China Normal University
- Guangzhou 51006
| |
Collapse
|
13
|
Mechanistic study in azide-alkyne cycloaddition (CuAAC) catalyzed by bifunctional trinuclear copper(I) pyrazolate complex: Shift in rate-determining step. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Bahsis L, Ablouh EH, Anane H, Taourirte M, Julve M, Stiriba SE. Cu(ii)-alginate-based superporous hydrogel catalyst for click chemistry azide-alkyne cycloaddition type reactions in water. RSC Adv 2020; 10:32821-32832. [PMID: 35516499 PMCID: PMC9056610 DOI: 10.1039/d0ra06410f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algae Laminaria digitata residue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 μm. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC) via click chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyne via the oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85-92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (ω k) at the electrophilic reagent and the local nucleophilicity (N k) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.
Collapse
Affiliation(s)
- Lahoucine Bahsis
- Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali B.P.: 20 24000 El Jadida Morocco
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
| | - El-Houssaine Ablouh
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad 40000 Marrakech Morocco
- Centre d'Analyse et de Caractérisation, Université Cadi Ayyad 40000 Marrakech Morocco
| | - Hafid Anane
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
| | - Moha Taourirte
- Laboratoire de Chimie Bioorganique et Macromoléculaire, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad 40000 Marrakech Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia C/Catedrático José Beltrán 46980 Paterna Valencia Spain
| | - Salah-Eddine Stiriba
- Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad 4162 Safi Morocco
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia C/Catedrático José Beltrán 46980 Paterna Valencia Spain
| |
Collapse
|
15
|
Mikhaylov VN, Pavlov AO, Ogorodnov YV, Spiridonova DV, Sorokoumov VN, Balova IA. N-Propargylation and Copper(I)-Catalyzed Azide-Alkyne Cycloaddition as a Convenient Strategy for Directed Post-Synthetic Modification of 4-Oxo-1,4-Dihydrocinnoline Derivatives. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02750-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|