1
|
Reyna JA, Krishnan VM, Silva Villatoro R, Arman HD, Stoian SA, Tonzetich ZJ. Square-planar imido complexes of cobalt: synthesis, reactivity and computational study. Dalton Trans 2024; 53:12128-12137. [PMID: 38979933 DOI: 10.1039/d4dt01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Treatment of [Co(N2)(tBuPNP)] (tBuPNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole) with one equivalent of an aryl azide generates the four-coordinate imido complexes [Co(NAr)(tBuPNP)] (Ar = mesityl, phenyl, or 4-tBu-phenyl). X-ray crystallographic analysis of the compounds shows an unusual square-planar geometry about cobalt with nearly linear imido units. In the presence of the hydrogen atom donor, TEMPOH, [Co(NPh)(tBuPNP)] undergoes addition of the H atom to the imido nitrogen to generate the corresponding amido complex, [Co(NHPh)(tBuPNP)], whose structure and composition were verified by independent synthesis. Despite the observation of H atom transfer reactivity with TEMPOH, the imido complexes do not show catalytic activity for C-H amination or aziridination for several substrates examined. In the case of [Co(NPh)(tBuPNP)], addition of excess azide produced the tetrazido complex, [Co(N4Ph2)(tBuPNP)], whose bond metrics were most consistent with an anionic Ph2N4 ligand. Density Functional Theory (DFT) investigations of the imido and tetrazido species suggest that they adopt a ground state best described as possessing a low-spin cobalt(II) ion ferromagnetically coupled to an iminyl radical.
Collapse
Affiliation(s)
- Jackson A Reyna
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - V Mahesh Krishnan
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - Roberto Silva Villatoro
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | | | - Zachary J Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| |
Collapse
|
2
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
3
|
Boudreaux CM, Nugegoda D, Yao W, Le N, Frey NC, Li Q, Qu F, Zeller M, Webster CE, Delcamp JH, Papish ET. Low-Valent Cobalt(I) CNC Pincer Complexes as Catalysts for Light-Driven Carbon Dioxide Reduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chance M. Boudreaux
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Dinesh Nugegoda
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Wenzhi Yao
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Nghia Le
- Department of Chemistry, Mississippi State University, Hand Lab, Mississippi State, Mississippi 39762, United States
| | - Nathan C. Frey
- Department of Chemistry, Mississippi State University, Hand Lab, Mississippi State, Mississippi 39762, United States
| | - Qing Li
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Fengrui Qu
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, X-ray Crystallography, Wetherill 101B, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Hand Lab, Mississippi State, Mississippi 39762, United States
| | - Jared H. Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, Coulter Hall, University, Mississippi 38677, United States
| | - Elizabeth T. Papish
- Department of Chemistry and Biochemistry, University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Gradiski MV, Rennie BE, Lough AJ, Morris RH. Electronic insights into aminoquinoline-based PN HN ligands: protonation state dictates geometry while coordination environment dictates N-H acidity and bond strength. Dalton Trans 2022; 51:11241-11254. [PMID: 35731231 DOI: 10.1039/d2dt01556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of transition metal complexes bearing aminoquinoline PNHH'-R ligands R = Ph (L1H), Cy (L2H) and their amido analogues are reported for rhodium(I) ([Rh(L1H)(PPh3)]+1 and Rh(L1)(PPh3) 2), cobalt(II) (Co(L2)(Cl) 3), and iron(II) ([Fe(L1H)2]2+5, Fe(L1)26, and [Fe(C5Me5)(L1H)]PF67). The acid-base and redox properties of the amido complexes 2, 6, and their protio parent complexes 1, and 5 permit the determination of the pKa and bond dissociation free energy (BDFE) of their N-H bonds while the ligand scaffold is coordinated to metal centres of square planar and octahedral geometry, respectively. From relative concentrations obtained by the use of 31P{1H} NMR spectroscopy, a pKaTHF value of 14 is calculated for rhodium complex 1, 6.4 for iron complex 5, and 24 for iron complex 7. These data, when combined with elecrochemical potentials obtained via cyclic voltammetry, allow the calculations of BDFE values for the N-H bond of 69 kcal mol-1 for 1, and of 55 kcal mol-1 for 5.
Collapse
Affiliation(s)
- Matthew V Gradiski
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Benjamin E Rennie
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Robert H Morris
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
5
|
Matsuyama T, Yatabe T, Yabe T, Yamaguchi K. Heterogeneously Catalyzed Selective Decarbonylation of Aldehydes by CeO 2-Supported Highly Dispersed Non-Electron-Rich Ni(0) Nanospecies. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Photo-redox coupled Co-pincer complexes for efficient decarbonylation of aryl carbonyls: A quantum chemical investigation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Alawisi H, Arman HD, Tonzetich ZJ. Catalytic Hydrogenation of Alkenes and Alkynes by a Cobalt Pincer Complex: Evidence of Roles for Both Co(I) and Co(II). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hussah Alawisi
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
- Department of Chemistry, King Faisal University, Al Hofuf, Kingdom of Saudi Arabia
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Kommera R, Balasubramanian S, Raju Bhimapaka C. RuCl
3
Catalyzed Reaction of Chromones with Bestmann‐Ohira Reagent for the Construction of 2‐Hydroxybenzoyl‐1
H
‐pyrazolylphosphonates and Dihydrochromeno[3,2‐
c
]pyrazolylphosphonates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rajkumar Kommera
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sridhar Balasubramanian
- Department of Analytical & Structural Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - China Raju Bhimapaka
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
10
|
|
11
|
Recent advances in the chemistry of group 9—Pincer organometallics. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Thompson CV, Tonzetich ZJ. Pincer ligands incorporating pyrrolyl units: Versatile platforms for organometallic chemistry and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Wang Z, Liu Q, Ji X, Deng GJ, Huang H. Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04411] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
14
|
Zhang S, Song Y, He X, Angamuthu R, Tung CH, Wang W. Reductive Coupling of Bridging Diaryl Ligands in Half-Sandwich Cobalt(II) Dimers: Revisiting Triple-Decker Cobalt(I) Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Shengnan Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, PR China
| | - Yike Song
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, PR China
| | - Xueshan He
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, PR China
| | - Raja Angamuthu
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, PR China
| | - Wenguang Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, Jinan 250100, PR China
| |
Collapse
|
15
|
Thompson CV, Arman HD, Tonzetich ZJ. Square-Planar Iron(II) Silyl Complexes: Synthesis, Characterization, and Insertion Reactivity. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C. Vance Thompson
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
16
|
Kato T, Kuriyama S, Nakajima K, Nishibayashi Y. Catalytic C-H Borylation Using Iron Complexes Bearing 4,5,6,7-Tetrahydroisoindol-2-ide-Based PNP-Type Pincer Ligand. Chem Asian J 2019; 14:2097-2101. [PMID: 30980480 DOI: 10.1002/asia.201900501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 01/23/2023]
Abstract
Catalytic C-H borylation has been reported using newly designed iron complexes bearing a 4,5,6,7-tetrahydroisoindol-2-ide-based PNP pincer ligand. The reaction tolerated various five-membered heteroarenes, such as pyrrole derivatives, as well as six-membered aromatic compounds, such as toluene. Successful examples of the iron-catalyzed sp3 C-H borylation of anisole derivatives were also presented.
Collapse
Affiliation(s)
- Takeru Kato
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shogo Kuriyama
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazunari Nakajima
- Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshiaki Nishibayashi
- Department of Systems Innovation, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
17
|
Arevalo R, Chirik PJ. Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. J Am Chem Soc 2019; 141:9106-9123. [PMID: 31084022 DOI: 10.1021/jacs.9b03337] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Homogeneous catalysis with Earth-abundant, first-row transition metals, including iron and cobalt, has gained considerable recent attention as a potentially cost-effective and sustainable alternative to more commonly and historically used precious metals. Because fundamental organometallic transformations, such as oxidative addition and reductive elimination, are two-electron processes and essential steps in many important catalytic cycles, controlling redox chemistry-in particular overcoming one-electron chemistry-has been as a central challenge with Earth-abundant metals. This Perspective focuses on approaches to impart sufficiently strong ligand fields to generate electron-rich metal complexes able to promote oxidative addition reactions where the redox changes are exclusively metal-based. Emphasis is placed on how ligand design and exploration of fundamental organometallic chemistry coupled with mechanistic understanding have been used to discover iron catalysts for the hydrogen isotope exchange in pharmaceuticals and cobalt catalysts for C(sp2)-H borylation reactions. A pervasive theme is that first-row metal complexes often promote unique chemistry from their precious-metal counterparts, demonstrating that these elements offer a host of new opportunities for reaction discovery and for more sustainable catalysis.
Collapse
Affiliation(s)
- Rebeca Arevalo
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Paul J Chirik
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
18
|
Richter SC, Oestreich M. Bioinspired Metal‐Free Formal Decarbonylation of α‐Branched Aliphatic Aldehydes at Ambient Temperature. Chemistry 2019; 25:8508-8512. [DOI: 10.1002/chem.201902082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Sven C. Richter
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Martin Oestreich
- Institut für ChemieTechnische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| |
Collapse
|
19
|
Xia A, Qi X, Mao X, Wu X, Yang X, Zhang R, Xiang Z, Lian Z, Chen Y, Yang S. Metal-Free Aerobic Oxidative Selective C-C Bond Cleavage in Heteroaryl-Containing Primary and Secondary Alcohols. Org Lett 2019; 21:3028-3033. [PMID: 30995066 DOI: 10.1021/acs.orglett.9b00563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A transition-metal-free aerobic oxidative selective C-C bond-cleavage reaction in primary and secondary heteroaryl alcohols is reported. This reaction was highly efficient and tolerated various heteroaryl alcohols, generating a carboxylic acid derivative and a neutral heteroaromatic compound. Experimental studies combined with density functional theory calculations revealed the mechanism underlying the selective C-C bond cleavage. This strategy also provides an alternative simple approach to carboxylation reaction.
Collapse
Affiliation(s)
- Anjie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xueyu Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xin Mao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xiaoai Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Xin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Rong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Zhiyu Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Zhong Lian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Yingchun Chen
- West China School of Pharmacy , Sichuan University , Chengdu , Sichuan 610041 , China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
20
|
Rummelt SM, Zhong H, Léonard NG, Semproni SP, Chirik PJ. Oxidative Addition of Dihydrogen, Boron Compounds, and Aryl Halides to a Cobalt(I) Cation Supported by a Strong-Field Pincer Ligand. Organometallics 2019; 38:1081-1090. [PMID: 30962670 DOI: 10.1021/acs.organomet.8b00870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cationic cobalt(I) dinitrogen complexes with a strong-field tridentate pincer ligand were prepared and the oxidative addition of polar and non-polar bonds was studied. Addition of H2 to [(iPrPNP)Co(N2)]+ (iPrPNP = 2,6-bis((diisopropylphosphaneyl)methyl)pyridine) in THF-d8 resulted in rapid oxidative addition and formation of the cis-Co(III) dihydride complex, cis-[(iPrPNP)Co(H)2L]+ where L = THF or N2. The addition of H2 was reversible as evidenced by the dynamics observed by variable temperature 1H NMR spectroscopy and the regeneration of [(iPrPNP)Co(N2)]+ upon exposure to dinitrogen. In contrast, addition of HBPin, (Pin = pinacolato) B2Pin2 and aryl halides resulted in the formation of net one-electron oxidation products: cationic Co(II)-boryl and Co(II)-halide/aryl complexes, respectively. All products were structurally characterized by X-ray crystallography and the electronic structures were determined by a combination of magnetic moment measurements, EPR spectroscopy and DFT calculations. Monitoring the addition of HBPin to [(iPrPNP)Co(N2)]+ provided evidence for a transient Co(III) oxidative addition product that likely undergoes comproportionation with the cobalt(I) starting material to generate the observed Co(II) products.
Collapse
Affiliation(s)
- Stephan M Rummelt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Nadia G Léonard
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Scott P Semproni
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|