1
|
Karagiannis A, Neugebauer H, Lalancette RA, Grimme S, Hansen A, Prokopchuk DE. Pushing the Limits of Organometallic Redox Chemistry with an Isolable Mn(-I) Dianion. J Am Chem Soc 2024; 146:19279-19285. [PMID: 38976843 DOI: 10.1021/jacs.4c04561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We report an incredibly reducing and redox-active Mn-I dianion, [Mn(CO)3(Ph2B(tBuNHC)2)]2- (NHC = N-heterocyclic carbene), furnished via 2e- reduction of the parent 16e- MnI complex with Na0 or K0. Cyclic voltammograms show a Mn0/-I redox couple at -3.13 V vs Fc+/0 in tetrahydrofuran (THF), -3.06 V in 1,2-dimethoxyethane, and -2.85 V in acetonitrile. The diamagnetic Mn-I dianion is stable in solution and solid-state at room temperature, tolerating a wide range of countercations ([M(2.2.2)crypt]+, [M(18-crown-6)]+, [nBu4N]+; M = Na, K). Countercation identity does not significantly alter 13C NMR spectral signatures with [nBu4N]+ and Na+, suggesting minimal ion pairing in solution. IR spectroscopy reveals a significant decrease in CO stretching frequencies from MnI to Mn-I (ca. 240 cm-1), consistent with a drastic increase in electron density at Mn. State-of-the-art DFT calculations are in excellent agreement with the observed IR spectral data. Moreover, the Mn-I dianion behaves as a chemical reductant, smoothly releasing 1e- or 2e- to regenerate the oxidized Mn0 or MnI species in solution. The reducing potential of [Mn(CO)3(Ph2B(tBuNHC)2)]2- surpasses the naphthalenide anion in THF (-3.09 V) and represents one of the strongest isolable chemical redox agents.
Collapse
Affiliation(s)
- Ageliki Karagiannis
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University-Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Kawabuchi Y, Suzuki T, Wada Y, Sunada Y. Reductive Retrocyclization of a Mangana(II)cyclopentasilane to Form Manganese(0) Bis(η 2-disilene) Complexes. Angew Chem Int Ed Engl 2024; 63:e202319804. [PMID: 38329155 DOI: 10.1002/anie.202319804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Ligand-exchange reactions on a mangana(II)cyclopentasilane complex that contains two THF ligands with aryl isocyanides led to the formation of manganese(0) bis(η2-disilene) complexes via a retrocyclization. In stark contrast, ligand-exchange reactions with CNtBu, an N-heterocyclic carbene, or pyridine-based ligands furnished manganese(II) complexes wherein the manganacyclopentasilane framework remained intact. The thermolysis of the obtained bis(η2-disilene) complex in the presence of mesityl isocyanide led to the formation of a cyclotetrasilane via the formal dimerization of the two η2-disilene moieties. The insertion of a mesityl isocyanide into the Mn-Siβ bond results in the formation of a manganese(II) complex supported by a [SiCSi]-type tridentate ligand scaffold.
Collapse
Affiliation(s)
- Yosuke Kawabuchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Takuma Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yoshimasa Wada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Yusuke Sunada
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan
| |
Collapse
|
3
|
Wani AA, Carballo JJG, Jayaprakash H, Wörle M, Widera A, Togni A, Grützmacher H. A Simple Manganese(I) Catalyst for the Efficient and Selective Hydrophosphination of Olefins with PH 3, Primary, and Secondary Phosphanes. Chemistry 2024; 30:e202303848. [PMID: 38312108 DOI: 10.1002/chem.202303848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/06/2024]
Abstract
A tridentate ligand L with a P,NH,N donor motif was synthesized in few steps from commercially available precursors. Upon reaction with [MnBr(CO)5], an octahedral 18-electron complex [Mn(CO)3(L)]Br (1) is obtained in which L adopts a facial arrangement. After deprotonation of the NH group in the cationic complex unit, a neutral Mn(I) amido complex [Mn(CO)2(L-H)] (2) is formed under loss of CO. Rearrangement of L-H leads to a trigonal bipyramidal structure in which the P and N donor centers are in trans position. Further deprotonation of 2 results in a dep-blue anionic complex fragment [Mn(CO)2(L-2H)]- (3). DFT calculations and a QTAIM analysis show that the amido complex 2 contains a Mn-N bond with partial double bond character and 3 an aromatic MnN2C2 ring. The anion [Mn(CO)2(L-2H)]- reacts with Ph2PH to give a phosphido complex, which serves as phosphide transfer reagent to activated olefins. But the catalytic activity is low. However, the neutral amido complex 2 is an excellent catalyst and with loadings as low as 0.04 mol %, turn over frequencies of >40'000 h-1 can be achieved. Furthermore, secondary and primary alkyl phosphines as well as PH3 can be added in a catalytic hydrophosphination reaction to a wide range of activated olefins such as α,β-unsaturated aldehydes, ketones, esters, and nitriles. But also, vinyl pyridine and some styrene derivatives are converted into the corresponding phosphanes.
Collapse
Affiliation(s)
- Aabid A Wani
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Juan José Gamboa Carballo
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC), University of Havana, Ave. S., Allende 1110, 10600 Havana, Cuba
| | - Harikrishnan Jayaprakash
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Anna Widera
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH, Zürich, Vladimir-Prelog-Weg 1, CH-8093, Zurich, Switzerland
| |
Collapse
|
4
|
Pecak J, Talmazan RA, Svatunek D, Kirchner K, Podewitz M. Is Mn(I) More Promising Than Fe(II)-A Comparison of Mn vs Fe Complexes for Olefin Metathesis. Organometallics 2024; 43:457-466. [PMID: 38425381 PMCID: PMC10900517 DOI: 10.1021/acs.organomet.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Olefin metathesis is one of the most significant transformations in organic chemistry and is an excellent example for efficient homogeneous catalysis. Although most currently used catalysts are primarily based on 4d and 5d metals, cycloaddition and cycloreversion reactions can also be attributed to first-row transition metals, such as Fe. Surprisingly, the potential of Mn(I)-based catalysts for olefin metathesis has been unexplored despite their prominence in homogeneous catalysis and their diagonal relationship to Ru(II). In the present study, we have investigated the prospective capabilities of Mn complexes for cycloaddition and reversion reactions using density functional theory. Therefore, we have initially compared the literature known iron model systems and their isoelectronic Mn counterparts regarding their reactivity and electronic structure. Next, we constructed potential Mn complexes derived from synthetically accessible species, including carbonyl ligands and obeying octahedral geometry. Based on thermodynamic parameters and the calculation of electronic descriptors, we were able to validate the isodiagonal relationship. Our study serves as guidance for the experimental chemist.
Collapse
Affiliation(s)
- Jan Pecak
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Radu A. Talmazan
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| | - Maren Podewitz
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, Vienna 1060, Austria
| |
Collapse
|
5
|
Oliemuller LK, Moore CE, Thomas CM. Synthesis, Characterization, and Reactivity of a (PPP) Pincer-Ligated Manganese Carbonyl Complex: Polarity Reversal Imparted by the Electrophilic Nature of a Planar Mn-P(NR 2) 2 Fragment. Inorg Chem 2023; 62:13997-14009. [PMID: 37585359 DOI: 10.1021/acs.inorgchem.3c01988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The bonding interactions of a synthesized pincer-ligated manganese dicarbonyl complex featuring an N-heterocyclic phosphenium (NHP+) central moiety are explored. The pincer ligand [PPP]Cl was coordinated to a manganese center using Mn(CO)5Br and 254 nm light to afford the chlorophosphine complex (PPClP)Mn(CO)2Br (2) as a mixture of halide exchange products and stereoisomers. The target dicarbonyl species (PPP)Mn(CO)2 (3) was prepared by treatment of 2 with 2 equiv of the reductant KC8. Computational investigations and analysis of structural parameters were used to elucidate multiple bonding interactions between the Mn center and the PNHP atom in 3. The generation of a product of formal H2 addition, (PPHP)Mn(CO)2H (4), was achieved through the dehydrogenation of NH3BH3, affording a 2:1 mixture of 4syn:4anti stereoisomers. The nucleophilic nature of the Mn center and the electrophilic nature of the PNHP moiety were demonstrated through hydride addition and protonation of 3 to produce K(THF)2[(PPHP)Mn(CO)2] (6) and (PPClP)Mn(CO)2H (5), respectively. The observed reactivity suggests that 3 is best described as a Mn-I/NHP+ complex, in contrast to pincer-ligated dicarbonyl manganese analogues typically assigned as MnI species.
Collapse
Affiliation(s)
- Leah K Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Tresp DS, Neugebauer H, Grimme S, Hansen A, Prokopchuk DE. Electronic Effects of Aminoindenyl Ligands Coordinated to Manganese: Structures and Properties of a Mn 0 Metalloradical and Bimetallic Mn –I/Mn I Adduct. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David S. Tresp
- Department of Chemistry, Rutgers University−Newark, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn 53115, Germany
| | - Demyan E. Prokopchuk
- Department of Chemistry, Rutgers University−Newark, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
Kuriyama S, Wei S, Kato T, Nishibayashi Y. Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation. Molecules 2022; 27:2373. [PMID: 35408764 PMCID: PMC9000597 DOI: 10.3390/molecules27072373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce only stoichiometric amounts of ammonia and silylamine, probably because the manganese pincer complexes are unstable under reducing conditions.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; (S.K.); (S.W.); (T.K.)
| |
Collapse
|
8
|
Karagiannis A, Tyryshkin AM, Lalancette RA, Spasyuk DM, Washington A, Prokopchuk DE. A redox-active Mn(0) dicarbene metalloradical. Chem Commun (Camb) 2022; 58:12963-12966. [DOI: 10.1039/d2cc04677f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rare redox-active Mn(0) dicarbene anion with solvent-dependent electrochemical behaviour has been synthesized and thoroughly characterized.
Collapse
Affiliation(s)
- Ageliki Karagiannis
- Department of Chemistry, Rutgers University – Newark, Newark, New Jersey 07102, USA
| | - Alexei M. Tyryshkin
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Roger A. Lalancette
- Department of Chemistry, Rutgers University – Newark, Newark, New Jersey 07102, USA
| | | | - Asmaa Washington
- Department of Chemistry, Rutgers University – Newark, Newark, New Jersey 07102, USA
| | - Demyan E. Prokopchuk
- Department of Chemistry, Rutgers University – Newark, Newark, New Jersey 07102, USA
| |
Collapse
|
9
|
Ehrlich N, Freytag M, Raeder J, Jones PG, Walter MD. Pyrrole‐based pincer ligands containing iminophosphorane moieties and their coordination chemistry with group 1 metals and magnesium. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nico Ehrlich
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig Germany
| | - Matthias Freytag
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig Germany
| | - Jan Raeder
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig Germany
| | - Marc D. Walter
- Technische Universität Braunschweig Institut für Anorganische und Analytische Chemie Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
10
|
Seo CSG, Tsui BTH, Gradiski MV, Smith SAM, Morris RH. Enantioselective direct, base-free hydrogenation of ketones by a manganese amido complex of a homochiral, unsymmetrical P–N–P′ ligand. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00446h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Base-free direct hydrogenation of ketones using a Mn(PNP′)(CO)2 complex is more enantioselective than that of a related base-activated iron complex.
Collapse
|
11
|
Idelson C, Webster L, Krämer T, Chadwick FM. Asymmetric bis-PNP pincer complexes of zirconium and hafnium - a measure of hemilability. Dalton Trans 2020; 49:16653-16656. [PMID: 33191415 DOI: 10.1039/d0dt03544k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asymmetrically-bound pyrrolide-based bis-PNP pincer complexes of zirconium and hafnium have been formed. The [κ2-PNPPh][κ3-PNPPh]MCl2 species are in direct contrast to previous zirconium PNP pincer complexes. The pincer ligands are fluxional in their binding and the energy barrier for exchange has been approximated using VT-NMR spectroscopy and the result validated by DFT calculations.
Collapse
Affiliation(s)
- Celia Idelson
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City, Shepherds Bush, London, W12 0BZ, UK.
| | | | | | | |
Collapse
|
12
|
Ott JC, Isak D, Melder JJ, Wadepohl H, Gade LH. Single or Paired? Structure and Reactivity of PNP-Chromium(II) Hydrides. Inorg Chem 2020; 59:14526-14535. [PMID: 32931701 DOI: 10.1021/acs.inorgchem.0c02315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation and reactivity of a range of novel paramagnetic chromium(II) complexes supported by a carbazole-based PNP pincer ligand is reported. Deprotonation of the ligand precursors R(PNP)H (1R) and subsequent reaction with chromium(II) chloride led to the formation of square-planar chlorido complexes R(PNP)CrCl (2R). Further reaction with various alkylating agents resulted in the isolation of chromium alkyl complexes R(PNP)CrR' (3R-R') which were then hydrogenated to yield two rare examples of paramagnetic chromium(II) hydrides 4iPr and 4tBu. Both compounds were characterized by X-ray diffraction and paramagnetic NMR spectroscopy supported by a comprehensive DFT-supported assignment of the resonances. While the di(tert-butyl)phosphino PNP substituted complex 4tBu was found to exhibit a monomeric square-planar molecular structure, its isopropyl-substituted analog 4iPr forms a dimer, also indicated by a strong antiferromagnetic coupling of the chromium centers. The pronounced reactivity of these compounds toward C═X double bonds was demonstrated by reaction with benzophenone, N,N'-dicyclohexylcarbodiimide, and carbon dioxide, which gave the corresponding insertion products. The alkoxido complex 5iPr, the amidinato complex 6iPr, and the formato compound 7tBu were also characterized by X-ray diffraction.
Collapse
Affiliation(s)
- Jonas C Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Daniel Isak
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Julian J Melder
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
14
|
Thompson CV, Tonzetich ZJ. Pincer ligands incorporating pyrrolyl units: Versatile platforms for organometallic chemistry and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Thompson CV, Arman HD, Tonzetich ZJ. Square-Planar Iron(II) Silyl Complexes: Synthesis, Characterization, and Insertion Reactivity. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C. Vance Thompson
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|