1
|
Farshadfar K, Laasonen K. DFT Mechanistic Investigation into Ni(II)-Catalyzed Hydroxylation of Benzene to Phenol by H 2O 2. Inorg Chem 2024; 63:5509-5519. [PMID: 38471975 PMCID: PMC11186014 DOI: 10.1021/acs.inorgchem.3c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Introduction of oxygen into aromatic C-H bonds is intriguing from both fundamental and practical perspectives. Although the 3d metal-catalyzed hydroxylation of arenes by H2O2 has been developed by several prominent researchers, a definitive mechanism for these crucial transformations remains elusive. Herein, density functional theory calculations were used to shed light on the mechanism of the established hydroxylation reaction of benzene with H2O2, catalyzed by [NiII(tepa)]2+ (tepa = tris[2-(pyridin-2-yl)ethyl]amine). Dinickel(III) bis(μ-oxo) species have been proposed as the key intermediate responsible for the benzene hydroxylation reaction. Our findings indicate that while the dinickel dioxygen species can be generated as a stable structure, it cannot serve as an active catalyst in this transformation. The calculations allowed us to unveil an unprecedented mechanism composed of six main steps as follows: (i) deprotonation of coordinated H2O2, (ii) oxidative addition, (iii) water elimination, (iv) benzene addition, (v) ketone generation, and (vi) tautomerization and regeneration of the active catalyst. Addition of benzene to oxygen, which occurs via a radical mechanism, turns out to be the rate-determining step in the overall reaction. This study demonstrates the critical role of Ni-oxyl species in such transformations, highlighting how the unpaired spin density value on oxygen and positive charges on the Ni-O• complex affect the activation barrier for benzene addition.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry and
Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and
Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
2
|
Song L, Tian X, Farshadfar K, Shiri F, Rominger F, Ariafard A, Hashmi ASK. An unexpected synthesis of azepinone derivatives through a metal-free photochemical cascade reaction. Nat Commun 2023; 14:831. [PMID: 36788212 PMCID: PMC9929248 DOI: 10.1038/s41467-023-36190-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023] Open
Abstract
Azepinone derivatives are privileged in organic synthesis and pharmaceuticals. Synthetic approaches to these frameworks are limited to complex substrates, strong bases, high power UV light or noble metal catalysis. We herein report a mild synthesis of azepinone derivatives by a photochemical generation of 2-aryloxyaryl nitrene, [2 + 1] annulation, ring expansion/water addition cascade reaction without using any metal catalyst. Among the different nitrene precursors tested, 2-aryloxyaryl azides performed best under blue light irradiation and Brønsted acid catalysis. The reaction scope is broad and the obtained products underwent divergent transformations to afford other related compounds. A computational study suggests a pathway involving a step-wise aziridine formation, followed by a ring-expansion to the seven-membered heterocycle. Finally, water is added in a regio-selective manner, this is accelerated by the added TsOH.
Collapse
Affiliation(s)
- Lina Song
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany
| | - Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany.
| | - Kaveh Farshadfar
- grid.411463.50000 0001 0706 2472Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran ,grid.5373.20000000108389418Research Group of Computational Chemistry, Department of Chemistry and Materials Science, Aalto University, Aalto, Finland
| | - Farshad Shiri
- grid.411463.50000 0001 0706 2472Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Frank Rominger
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran. .,School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia.
| | - A. Stephen K. Hashmi
- grid.7700.00000 0001 2190 4373Institut für Organische Chemie, Heidelberg University, Heidelberg, Germany ,grid.412125.10000 0001 0619 1117Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Tran HN, Nguyen CM, Koeritz MT, Youmans DD, Stanley LM. Nickel-catalyzed arylative substitution of homoallylic alcohols. Chem Sci 2022; 13:11607-11613. [PMID: 36320388 PMCID: PMC9555571 DOI: 10.1039/d2sc01716d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Direct coupling of unactivated alcohols remains a challenge in synthetic chemistry. Current approaches to cross-coupling of alcohol-derived electrophiles often involve activated alcohols such as tosylates or carbonates. We report the direct arylative substitution of homoallylic alcohols catalyzed by a nickel-bisphosphine complex as a facile method to generate allylic arenes. These reactions proceed via formation of an allylic alcohol intermediate. Subsequent allylic substitution with arylboroxine nucleophiles enables the formation of a variety of allylic arenes. The presence of p-methoxyphenylboronic acid is crucial to activate the allylic alcohol to achieve high product yields.
Collapse
Affiliation(s)
- Hai N Tran
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Chau M Nguyen
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Mason T Koeritz
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Dustin D Youmans
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| | - Levi M Stanley
- Department of Chemistry, Iowa State University Ames IA 50011 USA
| |
Collapse
|
4
|
Farshadfar K, Tague AJ, Talebi M, Yates BF, Hyland CJT, Ariafard A. Discovery of Redox-Promoted Brønsted Acid Catalysis in the Gold(III)-Catalyzed Annulation of Phenol and Cyclohexadiene. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Andrew J. Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Mohammad Talebi
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart 7001, Tasmania, Australia
| | - Brian F. Yates
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart 7001, Tasmania, Australia
| | - Christopher J. T. Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong 2522, New South Wales, Australia
| | - Alireza Ariafard
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart 7001, Tasmania, Australia
| |
Collapse
|
5
|
Vaz B, Martínez C, Cruz F, Denis JG, de Lera ÁR, Aurrecoechea JM, Álvarez R. Palladium-Catalyzed Aminocyclization-Coupling Cascades: Preparation of Dehydrotryptophan Derivatives and Computational Study. J Org Chem 2021; 86:8766-8785. [PMID: 34125552 PMCID: PMC8929666 DOI: 10.1021/acs.joc.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Dehydrotryptophan derivatives have been prepared by palladium-catalyzed aminocyclization-Heck-type coupling cascades starting from o-alkynylaniline derivatives and methyl α-aminoacrylate. Aryl, alkyl (primary, secondary, and tertiary), and alkenyl substituents have been introduced at the indole C-2 position. Further variations at the indole benzene ring, as well as the C-2-unsubstituted case, have all been demonstrated. In the case of C-2 aryl substitution, the preparation of the o-alkynylaniline substrate by Sonogashira coupling and the subsequent cyclization-coupling cascade have been performed in a one-pot protocol with a single catalyst. DFT calculations have revealed significant differences in the reaction profiles of these reactions relative to those involving methyl acrylate or methacrylate, and between the reactions of the free anilines and their corresponding carbamates. Those calculations suggest that the nature of the alkene and of the acid HX released in the HX/alkene exchange step that precedes C-C bond formation could be responsible for the experimentally observed differences in reaction efficiencies.
Collapse
Affiliation(s)
- Belén Vaz
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Claudio Martínez
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Francisco Cruz
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - J. Gabriel Denis
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Ángel R. de Lera
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - José M. Aurrecoechea
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - Rosana Álvarez
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
6
|
Jalali M, Hyland CJT, Bissember AC, Yates BF, Ariafard A. Hydroalkylation of Alkenes with 1,3-Diketones via Gold(III) or Silver(I) Catalysis: Divergent Mechanistic Pathways Revealed by a DFT-Based Investigation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mona Jalali
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Christopher J. T. Hyland
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Alex C. Bissember
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brian F. Yates
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Alireza Ariafard
- School of Natural Sciences—Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
7
|
Decarbonylative Issues Involved in Ru(II)‐Catalyzed [6+2−1] Annulation Reaction of Hydroxychromone with Alkyne: A DFT Study. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Li M, Sanz‐Marco A, Martinez‐Erro S, García‐Vázquez V, Mai BK, Fernández‐Gallardo J, Himo F, Martín‐Matute B. Unraveling the Mechanism of the Ir III -Catalyzed Regiospecific Synthesis of α-Chlorocarbonyl Compounds from Allylic Alcohols. Chemistry 2020; 26:14978-14986. [PMID: 32757212 PMCID: PMC7756427 DOI: 10.1002/chem.202002845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/19/2020] [Indexed: 01/02/2023]
Abstract
We have used experimental studies and DFT calculations to investigate the IrIII -catalyzed isomerization of allylic alcohols into carbonyl compounds, and the regiospecific isomerization-chlorination of allylic alcohols into α-chlorinated carbonyl compounds. The mechanism involves a hydride elimination followed by a migratory insertion step that may take place at Cβ but also at Cα with a small energy-barrier difference of 1.8 kcal mol-1 . After a protonation step, calculations show that the final tautomerization can take place both at the Ir center and outside the catalytic cycle. For the isomerization-chlorination reaction, calculations show that the chlorination step takes place outside the cycle with an energy barrier much lower than that for the tautomerization to yield the saturated ketone. All the energies in the proposed mechanism are plausible, and the cycle accounts for the experimental observations.
Collapse
Affiliation(s)
- Man Li
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | - Amparo Sanz‐Marco
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | | | | | - Binh Khanh Mai
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | | | - Fahmi Himo
- Department of Organic ChemistryStockholm University10691StockholmSweden
| | | |
Collapse
|
9
|
Heck arylation of acyclic olefins employing arenediazonium salts and chiral N,N ligands: new mechanistic insights from quantum-chemical calculations. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|