1
|
Sorroche A, Reboiro F, Monge M, López-de-Luzuriaga JM. Recent Trends in Group 11 Hydrogen Bonding. Chempluschem 2024; 89:e202400273. [PMID: 38764413 DOI: 10.1002/cplu.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Conventional hydrogen bonding (H-bonding) has been extensively studied in organic and biological systems. However, its role in transition metal chemistry, particularly with Group 11 metals (i. e. Cu, Ag, Au) as hydrogen bond acceptors, remains relatively unexplored. Through a combination of experimental techniques, such as Nuclear Magnetic Resonance (NMR), Infrared spectroscopy (IR), X-Ray Diffraction (XRD), and computational calculations, several aspects of H-bonding interactions with Group 11 metals are examined, shedding light on its impact on structural motifs and reactivity. These include bond strengths, geometries, and effects on electronic structures. Understanding the intricacies of hydrogen bonding within transition metal chemistry holds promise for various applications, including catalytic transformations, the construction of molecular assemblies, synthesis of complexes displaying anticancer activities, or luminescence applications (e. g. Thermally Activated Delayed Fluorescence, TADF). This review encompasses the most significant recent advances, challenges, and future prospects in this emerging field.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Félix Reboiro
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José María López-de-Luzuriaga
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
2
|
Sorroche A, Moreno S, Elena Olmos M, Monge M, López-de-Luzuriaga JM. Deciphering the Primary Role of Au⋅⋅⋅H-X Hydrogen Bonding in Gold Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310314. [PMID: 37615519 DOI: 10.1002/anie.202310314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Au⋅⋅⋅H-X (X=N or C) hydrogen bonding is gaining increasing interest, both in the study of its intrinsic nature and in their operability in different fields. While the role of these interactions has been studied in the stabilization of gold(I) complexes, their role during the minimum free energy reaction pathway of a given catalytic process remains unexplored. We report herein that complex [Au(C≡CPh)(pip)] (pip=piperidine) catalyses the A3 -coupling reaction for the synthesis of propargylamines, thanks to the ability of Au(I) to promote weak hydrogen bonding interactions with the reactants along the free energy profile. Density Functional Theory (DFT) calculations show that these Au⋅⋅⋅H-X interactions play a directing role in the catalysed A3 -coupling. Topological non-covalent interactions (NCI), interaction region indicator (IRI) and quantum theory of atoms in molecules (QTAIM) analysis in real space of the electron density provide a description of these interactions accurately.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Sonia Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - M Elena Olmos
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José M López-de-Luzuriaga
- Departamento de Química, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
3
|
Moreth D, Hörner G, Müller VVL, Geyer L, Schatzschneider U. Isostructural Series of Ni(II), Pd(II), Pt(II), and Au(III) Azido Complexes with a N^C^N Pincer Ligand to Elucidate Trends in the iClick Reaction Kinetics and Structural Parameters of the Triazolato Products. Inorg Chem 2023; 62:16000-16012. [PMID: 37728290 DOI: 10.1021/acs.inorgchem.3c02122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
An isoelectronic and isostructural series of cyclometalated azido complexes [M(N3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) based on the N^C^N pincer ligand 1,3-di(2-pyridyl)phenide (dpb) was characterized by X-ray diffraction analysis and investigated for reactivity in the iClick reaction with a wide range of internal and terminal alkynes by using 1H and 19F NMR spectroscopy. Reaction rate constants were found to increase with greater charge density in the order Ni(II) > Pd(II) > Pt(II) > Au(III). Terminal alkynes R-C≡C-R' with strongly electron-withdrawing groups R and R' exhibited faster kinetics than those with electron-donating substituents in the order CF3 > ketone > ester > H > phenyl ≫ amide, while R = CH3 resulted in complete loss of reactivity. Four symmetrical triazolato complexes [M(triazolatoCOOCH3,COOCH3)(dpb)] with M = Ni(II), Pd(II), Pt(II), and Au(III) as well as four nonsymmetrically substituted triazolato complexes [Pt(triazolatoR,R')(dpb)] originating from terminal and internal alkynes were shown by X-ray crystal structure analysis to exclusively feature N2-coordination of the five-membered ring ligand. However, the Pt(II) triazolato complexes exist as a mixture of N1- and N2-coordinated species in solution. Torsion angles between the mean planes of the N^C^N pincer and the triazolato ligand increase from a nearly coplanar to a perpendicular arrangement when going from Au(III)/Pt(II)/Pd(II) to Ni(II), while different substituents R and R' on the alkyne have no influence on the torsion angle and were rationalized by DFT calculations. Finally, a carbohydrate derivative obtained by glucuronic acid conjugation to methyl propiolate demonstrates the facile biofunctionalization of metal complexes via the iClick reaction.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Gerald Hörner
- Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Lucia Geyer
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
4
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
5
|
Sahu P, Jena AB, Barik S, Kisan HK, Isab AA, Dandapat J, Dinda J. Gold(III) assisted C-N bond dissociation; Synthesis, structure, photoluminescence, and pharmacokinetic studies of 1,10/- phenanthroline-gold(III)-N-heterocyclic carbene. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
McCallum T. Heart of gold: enabling ligands for oxidative addition of haloorganics in Au(I)/Au(III) catalysed cross-coupling reactions. Org Biomol Chem 2023; 21:1629-1646. [PMID: 36727215 DOI: 10.1039/d3ob00002h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The field of Au-catalysis has been an area rich with new discoveries due to the unique properties of the lustrous element. In the past decade, developments in Au(I)/Au(III) cross-coupling methodology have been made possible with the use of external oxidants that facilitate the challenging oxidation of Au(I) to Au(III) in a stable and catalytically competent fashion. Until recently, Au-chemistry was not known to undergo catalytic transformations that feature oxidative addition of haloarenes like those that were made famous by transition metals such as Pd and Ni. The discovery that ligand modification could facilitate the oxidative addition of Au(I) with haloorganics to provide Au(III) intermediates that are competent in other areas of catalysis (i.e. Lewis acid catalysis) has revolutionized this field and has led to the invention of new cross-coupling methodology. The recent advances at the leading edge in the emerging field of Au(I)/Au(III) catalysis under redox-neutral conditions are highlighted.
Collapse
Affiliation(s)
- Terry McCallum
- The Canadian Bank Note Company, Ottawa, Ontario, Canada.
| |
Collapse
|
7
|
Zheng C, Tang Y, Yu B. Tri( N-carbazolyl)phosphine Gold(I) Complexes: Structural and Catalytic Activity Studies. Inorg Chem 2022; 61:16874-16886. [PMID: 36219576 DOI: 10.1021/acs.inorgchem.2c02902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Twelve tri(N-carbazolyl)phosphine gold(I) complexes, bearing both protonated and deuterated aryl phosphorous triamide-type ligands, have been synthesized and characterized. An elusive Au-H(D) interaction between the H(D) atoms of the tri(N-carbazolyl)phosphine ligand at the H-1(D-1) position of the carbazolyl ring and the central gold atom was observed. Complexes 5(H)/5(D) bearing the dibrominated tri(N-carbazolyl)phosphine ligand exhibit isotopic polymorphism, in which two dramatically different crystal-packing modes between the protonated and deuterated forms occur. The catalytic potential of these complexes has been showcased in the gold(I)-catalyzed glycosylation with glycosyl o-alkynylbenzoates as donors, with TON being up to 27 000.
Collapse
Affiliation(s)
- Chang Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Feng X, Yang J, Miao J, Zhong C, Yin X, Li N, Wu C, Zhang Q, Chen Y, Li K, Yang C. Au⋅⋅⋅H−C Interactions Support a Robust Thermally Activated Delayed Fluorescence (TADF) Gold(I) Complex for OLEDs with Little Efficiency Roll‐Off and Good Stability. Angew Chem Int Ed Engl 2022; 61:e202209451. [DOI: 10.1002/anie.202209451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xingyu Feng
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Jian‐Gong Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Cheng Zhong
- Department of Chemistry Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 P. R. China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Chao Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Qizheng Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Kai Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
9
|
Feng X, Yang JG, Miao J, Zhong C, Yin X, Li N, Wu C, Zhang Q, Chen Y, Li K, Yang C. Au···H–C Interactions‐supported Robust TADF Gold(I) Complex for OLEDs with Extremely Small Efficiency Roll‐off and Good Stability. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xingyu Feng
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Jian-Gong Yang
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Jingsheng Miao
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Cheng Zhong
- Wuhan University Department of Chemistry CHINA
| | - Xiaojun Yin
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Nengquan Li
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Chao Wu
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Qizheng Zhang
- Shenzhen University College of Materials Science and Engineering CHINA
| | - Yong Chen
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials Beijing CHINA
| | - Kai Li
- Shenzhen University College of Materials Science and Engineering Xueyuan Blvd. 1066 518055 CHINA
| | - Chuluo Yang
- Shenzhen University College of Materials Science and Engineering Xueyuan Avenue 518000 Shenzhen CHINA
| |
Collapse
|
10
|
Maity L, Barik S, Biswas R, Natarajan R, Dinda J. N‐Heterocyclic Carbene (NHC) Boosted Photoluminescence; Synthesis, Structures and Photophysical Properties of bpy/phen‐Au (III)‐NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Sahadev Barik
- School of Chemical Sciences, National Institute of Science Education and Research, HBNI Bhubaneswar Odisha India
| | - Raju Biswas
- CSIR Indian Institute of Chemical Biology Kolkata West Bengal India
| | | | - Joydev Dinda
- Department of Chemistry Utkal University Bhubaneswar Odisha India
| |
Collapse
|
11
|
Abramova EO, Paderina AV, Slavova SO, Kostenko EA, Eliseenkov EV, Petrovskii SK, Gitlina AY, Boyarskiy VP, Grachova EV. Just Add the Gold: Aggregation-Induced-Emission Properties of Alkynylphosphinegold(I) Complexes Functionalized with Phenylene-Terpyridine Subunits. Inorg Chem 2021; 60:18715-18725. [PMID: 34823354 DOI: 10.1021/acs.inorgchem.1c02125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of organometallic complexes containing an alkynylphosphinegold(I) fragment and a phenylene-terpyridine moiety connected together by flexible linker have been prepared using the specially designed terpyridine ligands. The compounds were studied crystallographically to reveal that all of them contain a linearly coordinated Au(I) atom and a free terpyridine moiety. The different orientations of the molecules relative to each other in the solid state determine the multiple noncovalent interactions such as antiparallel ππ stacking, CH-π, and CH-Au, but no aurophilic interactions are realized. The organometallic Au(I) complexes obtained show fluorescence in the solution and dual singlet-triplet emission in the solid state. This means that their photophysical behavior is determined by both intermolecular lattice-defined interactions and Au(I) atom introduction. Density functional theory computational analysis supported the assignment of emission to intraligand electronic transitions only inside the phenylene-terpyridine part with no Au(I) involved. In addition, a study of the nature of the excited states for the "dimer" with an antiparallel orientation of the terpyridine fragment showed that this orientation leads to the generation of abstracted singlet and triplet states, lowering their energy in comparison with the monomer complex. Thus, the complexes obtained can be qualified as examples of Au(I)-containing organometallic aggregation-induced-emission luminogens.
Collapse
Affiliation(s)
- Evgenia O Abramova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra V Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Sofia O Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ekaterina A Kostenko
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Eugene V Eliseenkov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Stanislav K Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Anastasia Yu Gitlina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.,Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vadim P Boyarskiy
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
12
|
Narayana MA, Vaddamanu M, Sathyanarayana A, Siddhant K, Sugiyama S, Ozaki K, Rengan AK, Velappan K, Hisano K, Tsutsumi O, Prabusankar G. A gold(I) 1,2,3-triazolylidene complex featuring the interaction between gold and methine hydrogen. Dalton Trans 2021; 50:16514-16518. [PMID: 34761758 DOI: 10.1039/d1dt02827h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mesoionic N-heterocyclic carbene-gold(I) complex with a unique Au⋯H-C(methine) intramolecular hydrogen bonding interaction has been investigated in the solid state. The structure of this new neutral gold(I)-carbene was characterized by FT-IR and NMR spectroscopy, TGA, and X-ray diffraction techniques. Density functional theory (DFT) and atoms-in-molecule (AIM) analysis revealed that the gold-hydrogen bonding situation is more favored. Besides, the photophysical properties of the gold(I) complex were also investigated.
Collapse
Affiliation(s)
- Mannem Adi Narayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, India-502 284.
| | - Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad, India-502 284.
| | | | - Kumar Siddhant
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Shohei Sugiyama
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Kazuhisa Ozaki
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, India-502 284
| | - Kavitha Velappan
- DAV-IITH, Indian Institute of Technology Hyderabad, India-502 284
| | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, Kusatsu 525-8577, Japan.
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, India-502 284.
| |
Collapse
|
13
|
Kote BS, Kunchur HS, Radhakrishna L, Pandey MK, Balakrishna MS. Group 11 metal complexes of the dinucleating triazole appended bisphosphine 1,4-bis(5-(diisopropylphosphaneyl)-1-phenyl-1 H-1,2,3-triazol-4-yl)benzene. Dalton Trans 2021; 50:16782-16794. [PMID: 34766177 DOI: 10.1039/d1dt02803k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a triazole appended dinucleating bisphosphine 1,4-bis(5-(diisopropylphosphaneyl)-1-phenyl-1H-1,2,3-triazol-4-yl)benzene (2) and its coinage metal complexes are described. The dinucleating bisphosphine 2 was obtained by the temperature-controlled lithiation of 1,4-bis(1-phenyl-1H-1,2,3-triazol-4-yl)benzene (1a) and 1,4-bis(1-(2-bromophenyl)-1H-1,2,3-triazol-4-yl)benzene (1b) followed by the reaction with iPr2PCl. The reactions of 2 with copper(I) halides in 1 : 2 molar ratios yielded the [Cu(μ2-X)]2 dimeric complexes [{Cu(μ2-X)}2(PiPr2N3PhC2)2C6H4] (3, X = Cl; 4, X = Br; and 5, X = I), whereas the reaction of 2 with AgBr resulted in the formation of hetero-cubane complex [{Ag4(μ3-Br)4}{(PiPr2N3PhC2)2C6H4}2] (7). Similar reactions of 2 with AgX in 1 : 2 molar ratios yielded disilver complexes [{Ag(μ2-X)}2{(PiPr2N3PhC2)2C6H4}] (6, X = Cl and 8, X = I). Treatment of 2 with AgOAc in a 1 : 2 molar ratio afforded a dinuclear complex [Ag2(μ2-OAc)2{(PiPr2N3PhC2)2(C6H4)}] (9) with one of the acetate ligands bridging the two metal centres in the side-on mode, whereas the other one adopting the end-on mode keeping the >CO group uncoordinated. The reaction of 2 with two equivalents of [AuCl(SMe2)] afforded the digold complex [(AuClPiPr2N3PhC2)2C6H4] (10). The molecular structures of 2-5 and 7-10 were confirmed by single crystal X-ray analysis. Non-covalent interactions between Cu and Carene were observed in the molecular structures of 3, 4 and 5. These weak interactions were also assessed by DFT calculations in terms of their non-covalent interaction plots (NCI) and QTAIM analyses.
Collapse
Affiliation(s)
- Basvaraj S Kote
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| | - Harish S Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| | - Latchupatula Radhakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| | - Madhusudan K Pandey
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400 076, India.
| |
Collapse
|
14
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H-C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021; 60:21014-21024. [PMID: 34313367 PMCID: PMC8518757 DOI: 10.1002/anie.202108581] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/15/2023]
Abstract
Secondary ligand-metal interactions are decisive in many catalytic transformations. While arene-gold interactions have repeatedly been reported as critical structural feature in many high-performance gold catalysts, we herein report that these interactions can also be replaced by Au⋅⋅⋅H-C hydrogen bonds without suffering any reduction in catalytic performance. Systematic experimental and computational studies on a series of ylide-substituted phosphines featuring either a PPh3 (Ph YPhos) or PCy3 (Cy YPhos) moiety showed that the arene-gold interaction in the aryl-substituted compounds is efficiently compensated by the formation of Au⋅⋅⋅H-C hydrogen bonds. The strongest interaction is found with the C-H moiety next to the onium center, which due to the polarization results in remarkably strong interactions with the shortest Au⋅⋅⋅H-C hydrogen bonds reported to date. Calorimetric studies on the formation of the gold complexes further confirmed that the Ph YPhos and Cy YPhos ligands form similarly stable complexes. Consequently, both ligands showed the same catalytic performance in the hydroamination, hydrophenoxylation and hydrocarboxylation of alkynes, thus demonstrating that Au⋅⋅⋅H-C hydrogen bonds are equally suited for the generation of highly effective gold catalysts than gold-arene interactions. The generality of this observation was confirmed by a comparative study between a biaryl phosphine ligand and its cyclohexyl-substituted derivative, which again showed identical catalytic performance. These observations clearly support Au⋅⋅⋅H-C hydrogen bonds as fundamental secondary interactions in gold catalysts, thus further increasing the number of design elements that can be used for future catalyst construction.
Collapse
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Julian Löffler
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE)KAUST Catalysis Center (KCC)King Abdullah University of Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable ChemistryGhent UniversityKrijgslaan 281, S-39000GhentBelgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry IIFaculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
15
|
Darmandeh H, Löffler J, Tzouras NV, Dereli B, Scherpf T, Feichtner K, Vanden Broeck S, Van Hecke K, Saab M, Cazin CSJ, Cavallo L, Nolan SP, Gessner VH. Au⋅⋅⋅H−C Hydrogen Bonds as Design Principle in Gold(I) Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Heidar Darmandeh
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Julian Löffler
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Busra Dereli
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Thorsten Scherpf
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Kai‐Stephan Feichtner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| | - Sofie Vanden Broeck
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Luigi Cavallo
- Physical Sciences & Engineering Division (PSE) KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, S-3 9000 Ghent Belgium
| | - Viktoria H. Gessner
- Chair of Inorganic Chemistry II Faculty of Chemistry and Biochemistry Ruhr-University Bochum Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
16
|
Pérez-Bitrián A, Baya M, Casas JM, Martín A, Menjón B. Hydrogen bonding to metals as a probe for an inverted ligand field. Dalton Trans 2021; 50:5465-5472. [PMID: 33908974 DOI: 10.1039/d1dt00597a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-rich, late transition metals are known to act as hydrogen-bonding (HBd) acceptors. In this regard, Pt(ii) centres in square-planar environments are particularly efficient. It is however puzzling that no convincing experimental evidence is currently available for the isoelectronic neighbour Au(iii) being involved in HBd interactions. We report now on the synthesis and characterisation of two series of isoleptic and isoelectronic (d8) compounds [(CF3)3Pt(L)]- and (CF3)3Au(L), where the L ligands are based on the quinoline frame and have been selected to favour HBd with the metal centre. Strong HBd interactions were actually found in the Pt(ii) compounds, based on structural and spectroscopic evidence, and they were further confirmed by theoretical calculations. In contrast, no evidence was obtained in the Au(iii) case. In order to find the reason underlying this general disparity, we undertook a detailed theoretical analysis of the model systems [(CF3)3Pt(py)]- and (CF3)3Au(py). This study revealed that the filled dz2 orbital is the HOMO in the case of Pt(ii), but is buried in the lower energy levels in the case of Au(iii). The sharply different electronic configurations involve ligand-field inversion on going from Pt to the next element Au. This is not a gradual but an abrupt change, which invalidates Au(iii) as a HBd-acceptor wherever ligand-field inversion occurs.
Collapse
Affiliation(s)
- Alberto Pérez-Bitrián
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - Miguel Baya
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - José M Casas
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - Antonio Martín
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| | - Babil Menjón
- Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
17
|
Lei Z, Pei XL, Ube H, Shionoya M. Reconstituting C-Centered Hexagold(I) Clusters with N-Heterocyclic Carbene Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Vaddamanu M, Sathyanarayana A, Masaya Y, Sugiyama S, Kazuhisa O, Velappan K, Nandeshwar M, Hisano K, Tsutsumi O, Prabusankar G. Acridine N-Heterocyclic Carbene Gold(I) Compounds: Tuning from Yellow to Blue Luminescence. Chem Asian J 2021; 16:521-529. [PMID: 33442961 DOI: 10.1002/asia.202001380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Indexed: 12/18/2022]
Abstract
The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [(L1 )Au(Cl)] (1), [(L2 )Au(Cl)] (2), and [(L3 )Au(Cl)] (3) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N'-(n-butyl)-imidazolium chloride, (L1 .HCl)], [N-(9-acridinyl)-N'-(n-pentyl)-imidazolium chloride, (L2 .HCl)] and [N-(9-acridinyl)-N'-(n-hexyl)-imidazolium chloride, (L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1-3 with n-alkyl substituents is explored. The molecules 1-3 depicted blue emission in the solution state, while the yellow emission (for 1), greenish-yellow emission (for 2), and blue emission (for 3) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.
Collapse
Affiliation(s)
- Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| | - Arruri Sathyanarayana
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Yamane Masaya
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Shohei Sugiyama
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Ozaki Kazuhisa
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | | | - Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, TS, 502285, India
| |
Collapse
|
19
|
Manar KK, Chakrabortty S, Porwal VK, Prakash D, Thakur SK, Choudhury AR, Singh S. Two‐Coordinate Cu(I) and Au(I) Complexes Supported by BICAAC and CAAC Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202002295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Krishna K. Manar
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Soumyadeep Chakrabortty
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Vishal Kumar Porwal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Darsana Prakash
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Sandeep Kumar Thakur
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| | - Sanjay Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81 SAS Nagar, Mohali 140306 Punjab India
| |
Collapse
|
20
|
Vaddamanu M, Sathyanarayana A, Masaya Y, Sugiyama S, Kazuhisa O, Velappan K, Subramaniyam K, Hisano K, Tsutsumi O, Prabusankar G. Correction to “A Rare Intramolecular Au···H–C( sp3) Interaction in a Gold(I) N-Heterocyclic Carbene. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Vaddamanu M, Sathyanarayana A, Masaya Y, Sugiyama S, Kazuhisa O, Velappan K, Subramaniyam K, Hisano K, Tsutsumi O, Prabusankar G. A Rare Intramolecular Au···H–C(sp3) Interaction in a Gold(I) N-Heterocyclic Carbene. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Moulali Vaddamanu
- Department of Chemistry, Indian Institute of Technology Hyderabad,Hyderabad 502285, India
| | - Arruri Sathyanarayana
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Yamane Masaya
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Shohei Sugiyama
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Ozaki Kazuhisa
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Kavitha Velappan
- Department of Chemistry, GITAM, Hyderabad, Telangana 502329, India
| | | | - Kyohei Hisano
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Osamu Tsutsumi
- Department of Applied Chemistry, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad,Hyderabad 502285, India
| |
Collapse
|
22
|
Peng K, Einsele R, Irmler P, Winter RF, Schatzschneider U. The iClick Reaction of a BODIPY Platinum(II) Azido Complex with Electron-Poor Alkynes Provides Triazolate Complexes with Good 1O2 Sensitization Efficiency. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Peng
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Richard Einsele
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter Irmler
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
23
|
Cordero-Rivera RE, Rendón-Nava D, Ángel-Jijón C, Suárez-Castillo OR, Mendoza-Espinosa D. Synthesis and Reactivity of (NHC)AuI–Mercaptopyridine Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R. Evelyn Cordero-Rivera
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - David Rendón-Nava
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - Carlos Ángel-Jijón
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - Oscar R. Suárez-Castillo
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| | - Daniel Mendoza-Espinosa
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5, Mineral de
la Reforma, Hidalgo, Mexico 42090
| |
Collapse
|
24
|
Pandey MK, Kunchur HS, Mondal D, Radhakrishna L, Kote BS, Balakrishna MS. Rare Au···H Interactions in Gold(I) Complexes of Bulky Phosphines Derived from 2,6-Dibenzhydryl-4-methylphenyl Core. Inorg Chem 2020; 59:3642-3658. [DOI: 10.1021/acs.inorgchem.9b03207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Madhusudan K. Pandey
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Harish S. Kunchur
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Latchupatula Radhakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Basvaraj S. Kote
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Maravanji S. Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|