1
|
Ionova VA, Dmitrieva AV, Abel AS, Sergeev AD, Evko GS, Yakushev AA, Gontcharenko VE, Nefedov SE, Roznyatovsky VA, Cheprakov AV, Averin AD, Magdesieva TV, Beletskaya IP. Di(pyridin-2-yl)amino-substituted 1,10-phenanthrolines and their Ru(II)-Pd(II) dinuclear complexes: synthesis, characterization and application in Cu-free Sonogashira reaction. Dalton Trans 2024; 53:17021-17035. [PMID: 39355929 DOI: 10.1039/d4dt02067g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Dinuclear complexes bearing Ru(II) photoactive centers are of interest for the development of efficient dual catalysts for many photocatalyzed reactions. Ditopic polypyridine ligands, bis(pyridin-2-yl)amino-1,10-phenanthrolines, containing an additional coordination site (bis(pyridin-2-yl)amine, dpa) at positions 3, 4 or 5 of the 1,10-phenanthroline core (Phen-3NPy2, Phen-4NPy2 and Phen-5NPy2) were synthesized. They were used as bridging ligands to obtain dinuclear complexes [(bpy)2Ru(Phen-NPy2)PdCl2](PF6)2 (Ru(Phen-NPy2)Pd) in good yields via stepwise complexation. In these complexes Ru(II) is coordinated to 1,10-phenanthroline, while Pd(II) is bound to the dpa chelating moiety, as established by NMR spectroscopy and X-ray single crystal analysis. The influence of the position of dpa in the phenanthroline ring on the structural, optical and electrochemical properties of Ru(Phen-NPy2)Pd complexes was studied. The complexes exhibit photoluminescence in argon-saturated MeCN solution with maxima in the range of 615-625 nm, with emission quantum yields ranging from 0.11 to 0.15 for Ru(Phen-NPy2) complexes and from 0.018 to 0.026 for dinuclear Ru(Phen-NPy2)Pd complexes. All the complexes absorb visible light in the range of 370-470 nm with high extinction coefficients and can be considered useful as photocatalysts. The Ru2+/3+ potential in Ru(Phen-NPy2)Pd complexes showed no significant dependence on the dpa position, while the Pd2+/0 reduction potential was significantly lower for Ru(Phen-3NPy2)Pd and Ru(Phen-4NPy2)Pd, than for Ru(Phen-5NPy2)Pd (-0.57 V and -0.72 V vs. Ag/AgCl, KCl(sat.), respectively). The complexes were used as photoactivated precatalysts in Cu-free Sonogashira coupling under blue LEDs (12 W) irradiation. The reaction proceeded roughly three times faster when Ru(Phen-4NPy2)Pd and Ru(Phen-3NPy2)Pd were used as catalyst precursors compared to the mixed catalytic system Ru(bpy)3(PF6)2/(RNPy2)PdCl2.
Collapse
Affiliation(s)
- Violetta A Ionova
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Alena V Dmitrieva
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Anton S Abel
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Aleksandr D Sergeev
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Grigory S Evko
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Alexei A Yakushev
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Victoria E Gontcharenko
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53, Leninsky Prospect, Moscow, 119991, Russia
- Higher School of Economics, Faculty of Chemistry, National Research University, 20 Miasnitskaya Street, Moscow, 101000, Russia
| | - Sergei E Nefedov
- N.S. Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| | - Vitaly A Roznyatovsky
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Andrey V Cheprakov
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Alexei D Averin
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Tatiana V Magdesieva
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
| | - Irina P Beletskaya
- Lomonosov Moscow State University, Department of Chemistry, 1-3, Leninskie Gory, Moscow, 119991, Russia.
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Hong P, Zhu X, Lai X, Gong Z, Huang M, Wan Y. Room-Temperature CuI-Catalyzed N-Arylation of Cyclopropylamine. J Org Chem 2024; 89:57-67. [PMID: 38109271 DOI: 10.1021/acs.joc.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A general and efficient CuI/N-carbazolyl-1H-pyrrole-2-carbohydrazide catalyst system was developed for the N-arylation of cyclopropylamine using aryl bromides at room temperature. Herein, 5 mol % CuI and 5 mol % of the ligand were used to synthesize N-aryl cyclopropylamines in moderate to excellent yields. This protocol was scaled up to produce the desired product at gram levels and has been generalized for C-N coupling between aryl bromides and amines at room temperature.
Collapse
Affiliation(s)
- Peng Hong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Xinhai Zhu
- Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Instrument Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xin Lai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Zinan Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Manna Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
- Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
3
|
Wei X, Wang K, Fang W. Highly efficient α-arylation of aryl ketones with aryl chlorides by using bulky imidazolylidene-ligated oxazoline palladacycles. Org Biomol Chem 2023; 21:3858-3862. [PMID: 37093227 DOI: 10.1039/d3ob00354j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
α-Aryl derivatives of carbonyl compounds are important building blocks. Herein, we presented an efficient catalytic system for the α-arylation of aryl ketones with inactive aryl chlorides by firstly using N,N'-bis(2,6-diisopropylphenyl)-imidazol-2-ylidene (IPr)-ligated chiral oxazoline palladacycles, and tolerated a wide range of substrates at low catalyst loadings, leading to the desired products in good to excellent yields.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
A Second-Generation Palladacycle Architecture Bearing a N-Heterocyclic Carbene and Its Catalytic Behavior in Buchwald–Hartwig Amination Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Palladacyclic architectures have been shown as versatile motifs in cross-coupling reactions. NHC-ligated palladacycles possessing unique electronic and steric properties have helped to stabilize the catalytically active species and provide additional control over reaction selectivity. Here, we report on a synthetic protocol leading to palladacycle complexes using a mild base and an environmentally desirable solvent, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene ligands. The readily accessible complexes exhibit high catalytic activity in the Buchwald–Hartwig amination. This is achieved using low catalyst loading and mild reaction conditions in a green solvent.
Collapse
|
5
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing 1,1-Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin-2-ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022; 61:e202202637. [PMID: 35362643 PMCID: PMC9400972 DOI: 10.1002/anie.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.
Collapse
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| | | | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Straße 417489GreifswaldGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, GopanpallyHyderabad 500046TelanganaIndia
| |
Collapse
|
6
|
Das A, Elvers BJ, Nayak MK, Chrysochos N, Anga S, Kumar A, Rao DK, Narayanan TN, Schulzke C, Yildiz CB, Jana A. Realizing the 1,1‐Dehydration of Secondary Alcohols to Carbenes: Pyrrolidin‐2‐ols as a Source of Cyclic (Alkyl)(Amino)Carbenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayan Das
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | | | - Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - Amar Kumar
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | - D. Krishna Rao
- Tata Institute of Fundamental Research Hyderabad Chemistry INDIA
| | | | | | - Cem B. Yildiz
- Aksaray Universitesi Aromatic and Medicinal Plants TURKEY
| | - Anukul Jana
- TIFR Centre for Interdisciplinary Sciences Chemical Science 21, Brundavan Colony, Narsingi 500075 Hyderabad INDIA
| |
Collapse
|
7
|
Scattolin T, Pessotto I, Cavarzerani E, Canzonieri V, Orian L, Demitri N, Schmidt C, Casini A, Bortolamiol E, Visentin F, Rizzolio F, Nolan SP. Indenyl and allyl palladate complexes bearing N‐heterocyclic carbene ligands: an easily accessible class of new anticancer drug candidates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thomas Scattolin
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari Via Torino 155 30037 Mestre ITALY
| | - Ilenia Pessotto
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | - Enrico Cavarzerani
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | | | - Laura Orian
- University of Padova: Universita degli Studi di Padova Scienze Chimiche ITALY
| | - Nicola Demitri
- Elettra Sincrotrone Trieste SCpA elettra sincrotrone ITALY
| | - Claudia Schmidt
- Munich University of Technology: Technische Universitat Munchen Chemistry GERMANY
| | - Angela Casini
- Munich University of Technology: Technische Universitat Munchen Chemistry GERMANY
| | - Enrica Bortolamiol
- Ca'Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | - Fabiano Visentin
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | - Flavio Rizzolio
- Ca' Foscari University of Venice: Universita Ca' Foscari Scienze Molecolari e Nanosistemi ITALY
| | | |
Collapse
|
8
|
Buchwald–Hartwig reaction: an update. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Guillet SG, Pisanò G, Chakrabortty S, Müller BH, Vries JG, Kamer PCJ, Cazin CSJ, Nolan SP. A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien G. Guillet
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Soumyadeep Chakrabortty
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Bernd H. Müller
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Johannes G. Vries
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. (LIKAT Rostock) Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| | - Steven. P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University Krijgslaan 281, Campus Sterre, Building S-3 9000 Ghent Belgium
| |
Collapse
|
10
|
Scattolin T, Voloshkin VA, Martynova E, Vanden Broeck SMP, Beliš M, Cazin CSJ, Nolan SP. Synthesis and catalytic activity of palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. Dalton Trans 2021; 50:9491-9499. [PMID: 34254628 DOI: 10.1039/d1dt01716k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis and characterization of novel palladium complexes bearing N-heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) are reported. These organometallic complexes can be easily obtained using two different synthetic strategies that involve either the substitution of the pyridine ligand from trans-[Pd(NHC)(Py)Cl2] or by simple addition of the CAP ligand to dimeric species [Pd(NHC)Cl2]2. The mixed NHC/CAP complexes were tested as pre-catalysts in the Buchwald-Hartwig aryl amination coupling, showing good catalytic activity, especially in the case of cis-[Pd(IPr)(CAP)Cl2].
Collapse
Affiliation(s)
- Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Vladislav A Voloshkin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Ekaterina Martynova
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Sofie M P Vanden Broeck
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Marek Beliš
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
11
|
Ostrowska S, Scattolin T, Nolan SP. N-Heterocyclic carbene complexes enabling the α-arylation of carbonyl compounds. Chem Commun (Camb) 2021; 57:4354-4375. [PMID: 33949497 DOI: 10.1039/d1cc00913c] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The considerable importance of α-arylated carbonyl compounds, which are widely used as final products or as key intermediates in the pharmaceutical industry, has prompted numerous research groups to develop efficient synthetic strategies for their preparation in recent decades. In this context, the α-arylation of carbonyl compounds catalyzed by transition-metal complexes have been particularly helpful in constructing this motif. As illustrated in this contribution, tremendous advances have taken place using palladium- and nickel-NHC (NHC = N-heterocyclic carbene) complexes as pre-catalysts for the arylation of a wide range of ketones, aldehydes, esters and amides with electron-rich, electron-neutral, electron-poor, and sterically hindered aryl halides or pseudo-halides. Despite significant progress, especially in asymmetric α-arylations promoted by chiral NHC ligands, there are numerous challenges which have and continue to encourage further studies on this topic. Some of these are presented in this report.
Collapse
Affiliation(s)
- Sylwia Ostrowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
12
|
Regioselection in the synthesis of 4-benzyltetral-1-ones and the new 4-arylbenzosuber-1-ones. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Martynova EA, Tzouras NV, Pisanò G, Cazin CSJ, Nolan SP. The “weak base route” leading to transition metal–N-heterocyclic carbene complexes. Chem Commun (Camb) 2021; 57:3836-3856. [DOI: 10.1039/d0cc08149c] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-Heterocyclic carbenes (NHCs) are nowadays ubiquitous in organometallic chemistry and catalysis. A simple synthetic route to these is presented.
Collapse
Affiliation(s)
- Ekaterina A. Martynova
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Nikolaos V. Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Gianmarco Pisanò
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Catherine S. J. Cazin
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Centre for Sustainable Chemistry
- Ghent University
- 9000 Gent
- Belgium
| |
Collapse
|
14
|
Shepelenko KE, Soliev SB, Galushko AS, Chernyshev VM, Ananikov VP. Different effects of metal-NHC bond cleavage on the Pd/NHC and Ni/NHC catalyzed α-arylation of ketones with aryl halides. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01411g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fundamental differences in the behavior of Pd/NHC and Ni/NHC catalytic systems in ketones α-arylation were elucidated and exploited.
Collapse
Affiliation(s)
| | | | - Alexey S. Galushko
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russia
| | | | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI)
- Russia
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
| |
Collapse
|
15
|
Abi Fayssal S, Naret T, Huc V, Buendia J, Martini C, Schulz E. Benzyloxycalix[8]arene supported Pd–NHC cinnamyl complexes for Buchwald–Hartwig C–N cross-couplings. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00669j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a Pd–NHC cinnamyl-complex supported on a calix[8]arene and its use in Buchwald–Hartwig amination is reported. Thanks to the support, the products were isolated with low levels of residual palladium, in some cases below standards.
Collapse
Affiliation(s)
- Sandra Abi Fayssal
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | - Timothée Naret
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | - Vincent Huc
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| | | | | | - Emmanuelle Schulz
- Université Paris-Saclay
- CNRS
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- 91405 Orsay
- France
| |
Collapse
|
16
|
|
17
|
Tzouras NV, Nahra F, Falivene L, Cavallo L, Saab M, Van Hecke K, Collado A, Collett CJ, Smith AD, Cazin CSJ, Nolan SP. A Mechanistically and Operationally Simple Route to Metal-N-Heterocyclic Carbene (NHC) Complexes. Chemistry 2020; 26:4515-4519. [PMID: 32022329 DOI: 10.1002/chem.202000564] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 11/08/2022]
Abstract
We have been puzzled by the involvement of weak organic and inorganic bases in the synthesis of metal-N-heterocyclic carbene (NHC) complexes. Such bases are insufficiently strong to permit the presumed required deprotonation of the azolium salt (the carbene precursor) prior to metal binding. Experimental and computational studies provide support for a base-assisted concerted process that does not require free NHC formation. The synthetic protocol was found applicable to a number of transition-metal- and main-group-centered NHC compounds and could become the synthetic route of choice to form M-NHC bonds.
Collapse
Affiliation(s)
- Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium.,Separation and Conversion Technology Unit, VITO (Flemish Institute for Technological Research), Boeretang 200, B-2400, Mol, Belgium
| | - Laura Falivene
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Marina Saab
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Alba Collado
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | | | - Andrew D Smith
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Catherine S J Cazin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281,S-3, 9000, Ghent, Belgium
| |
Collapse
|
18
|
N-heterocyclic carbene-Pd(II)-2-methyl-4,5-dihydrooxazole complex-catalyzed highly chemoselective mono-amination of dichlorobenzenes. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Reddy MVK, Anusha G, Reddy PVG. Sterically enriched bulky 1,3-bis(N,N′-aralkyl)benzimidazolium based Pd-PEPPSI complexes for Buchwald–Hartwig amination reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj01294g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A simple and efficient synthesis of a series of unexisting Pd-PEPPSI complexes is summarized. These complexes are exploited for their high catalytic activity towards Buchwald–Hartwig amination.
Collapse
|
20
|
Anticancer Indole-Based Chalcones: A Structural and Theoretical Analysis. Molecules 2019; 24:molecules24203728. [PMID: 31623155 PMCID: PMC6832658 DOI: 10.3390/molecules24203728] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
The crystal structures of five new chalcones derived from N-ethyl-3-acetylindole with different substituents were investigated: (E)-3-(4-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3a); (E)-3-(3-bromophenyl)-1-(1-ethyl-1H-indol-3-yl)prop-2-en-1-one (3b); (E)-1-(1-ethyl-1H-indol-3-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c); (E)-1-(1-ethyl-1H-indol-3-yl)-3-mesitylprop-2-en-1-one (3d); and (E)-1-(1-ethyl-1H-indol-3-yl)-3-(furan-2-yl)prop-2-en-1-one (3e). The molecular packing of the studied compounds is controlled mainly by C–H⋅⋅⋅O hydrogen bonds, C–H⋅⋅⋅π interactions, and π···π stacking interactions, which were quantitatively analyzed using Hirshfeld topology analysis. Using density functional theory (DFT) calculations, the order of polarity (3b ˂ 3d ˂ 3e ˂ 3a ˂ 3c) was determined. Several chemical reactivity indices such as the ionization potential (I), electron affinity (A), chemical potential (μ), hardness (η), electrophilicity (ω) and nucleophilicity (N) indices were calculated, and these properties are discussed and compared. In addition, the antiproliferative activity of the five new chalcones was studied.
Collapse
|
21
|
Hu XQ, Lichte D, Rodstein I, Weber P, Seitz AK, Scherpf T, Gessner VH, Gooßen LJ. Ylide-Functionalized Phosphine (YPhos)–Palladium Catalysts: Selective Monoarylation of Alkyl Ketones with Aryl Chlorides. Org Lett 2019; 21:7558-7562. [DOI: 10.1021/acs.orglett.9b02830] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiao-Qiang Hu
- Faculty of Chemistry and Biochemistry, Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Dominik Lichte
- Faculty of Chemistry and Biochemistry, Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ilja Rodstein
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Philip Weber
- Faculty of Chemistry and Biochemistry, Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ann-Katrin Seitz
- Faculty of Chemistry and Biochemistry, Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Thorsten Scherpf
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Viktoria H. Gessner
- Faculty of Chemistry and Biochemistry, Chair of Inorganic Chemistry II, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Lukas J. Gooßen
- Faculty of Chemistry and Biochemistry, Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|