1
|
Singh KK, Gerke CS, Saund SS, Zito AM, Siegler MA, Thoi VS. CO 2 Activation with Manganese Tricarbonyl Complexes through an H-Atom Responsive Benzimidazole Ligand. Chemistry 2023; 29:e202300796. [PMID: 37519094 DOI: 10.1002/chem.202300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Herein, we report the synthesis and characterization of two manganese tricarbonyl complexes, MnI (HL)(CO)3 Br (1 a-Br) and MnI (MeL)(CO)3 Br (1 b-Br) (where HL=2-(2'-pyridyl)benzimidazole; MeL=1-methyl-2-(2'-pyridy)benzimidazole) and assayed their electrocatalytic properties for CO2 reduction. A redox-active pyridine benzimidazole ancillary ligand in complex 1 a-Br displayed unique hydrogen atom transfer ability to facilitate electrocatalytic CO2 conversion at a markedly lower reduction potential than that observed for 1 b-Br. Notably, a one-electron reduction of 1 a-Br yields a structurally characterized H-bonded binuclear Mn(I) adduct (2 a') rather than the typically observed Mn(0)-Mn(0) dimer, suggesting a novel method for CO2 activation. Combining advanced electrochemical, spectroscopic, and single crystal X-ray diffraction techniques, we demonstrate the use of an H-atom responsive ligand may reveal an alternative, low-energy pathway for CO2 activation by an earth-abundant metal complex catalyst.
Collapse
Affiliation(s)
- Kundan K Singh
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Carter S Gerke
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Simran S Saund
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Alessandra M Zito
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - V Sara Thoi
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| |
Collapse
|
2
|
Shipp J, Parker S, Spall S, Peralta-Arriaga SL, Robertson CC, Chekulaev D, Portius P, Turega S, Buckley A, Rothman R, Weinstein JA. Photocatalytic Reduction of CO 2 to CO in Aqueous Solution under Red-Light Irradiation by a Zn-Porphyrin-Sensitized Mn(I) Catalyst. Inorg Chem 2022; 61:13281-13292. [PMID: 35960651 PMCID: PMC9446891 DOI: 10.1021/acs.inorgchem.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This work demonstrates photocatalytic CO2 reduction
by a noble-metal-free photosensitizer-catalyst system in aqueous solution
under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine
complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography,
and shown to reduce CO2 to CO following photosensitization
by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride
[Zn(TMPyP)]Cl4 (2) under 625 nm irradiation.
This is the first example of 2 employed as a photosensitizer
for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising
the electronic properties of the catalyst. The photostability of the
active Mn(I) catalyst over prolonged periods of irradiation with red
light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous
photocatalyst, working in water and under red light, illustrates further
future prospects of intrinsically photounstable Mn(I) complexes as
solar-driven catalysts in an aqueous environment. A Mn(I) bipyridyl tricarbonyl complex,
where the diimine
ligand is functionalized with water-solubilizing phosphonate ester
groups, has been prepared and is shown to catalytically convert CO2 to CO in aqueous solution following photosensitization from
a water-soluble Zn(II) porphyrin under red-light irradiation.
Collapse
Affiliation(s)
- James Shipp
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Parker
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Steven Spall
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Peter Portius
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Turega
- Department of Chemistry, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Alastair Buckley
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Rachael Rothman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
3
|
Cohen KY, Reinhold A, Evans R, Lee TS, Kuo HY, Nedd DG, Scholes GD, Bocarsly AB. Elucidating the mechanism of photochemical CO 2 reduction to CO using a cyanide-bridged di-manganese complex. Dalton Trans 2022; 51:17203-17215. [DOI: 10.1039/d2dt02506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complex, [{[Mn(bpy)(CO)3]2}(μ-CN)]+ (Mn2CN+), has previously been shown to photochemically reduce CO2 to CO.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Adam Reinhold
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Rebecca Evans
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Tia S. Lee
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Hsin-Ya Kuo
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Delaan G. Nedd
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Gregory D. Scholes
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| | - Andrew B. Bocarsly
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Man Ngo F, Tse ECM. Bioinorganic Platforms for Sensing, Biomimicry, and Energy Catalysis. CHEM LETT 2021. [DOI: 10.1246/cl.200875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fung Man Ngo
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, P. R. China
- Advanced Functional Materials Laboratory, HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, P. R. China
| | - Edmund C. M. Tse
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, P. R. China
- Advanced Functional Materials Laboratory, HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, P. R. China
| |
Collapse
|
5
|
Bhattacharya M, Sebghati S, VanderLinden RT, Saouma CT. Toward Combined Carbon Capture and Recycling: Addition of an Amine Alters Product Selectivity from CO to Formic Acid in Manganese Catalyzed Reduction of CO 2. J Am Chem Soc 2020; 142:17589-17597. [PMID: 32955864 DOI: 10.1021/jacs.0c07763] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Owing to the energetic cost associated with CO2 release in carbon capture (CC), the combination of carbon capture and recycling (CCR) is an emerging area of research. In this approach, "captured CO2," typically generated by addition of amines, serves as a substrate for subsequent reduction. Herein, we report that the reduction of CO2 in the presence of morpholine (generating mixtures of the corresponding carbamate and carbamic acid) with a well-established Mn electrocatalyst changes the product selectivity from CO to H2 and formate. The change in selectivity is attributed to in situ generation of the morpholinium carbamic acid, which is sufficiently acidic to protonate the reduced Mn species and generate an intermediate Mn hydride. Thermodynamic studies indicate that the hydride is not sufficiently hydritic to reduce CO2 to formate, unless the apparent hydricity, which encompasses formate binding to the Mn, is considered. Increasing steric bulk around the Mn shuts down rapid homolytic H2 evolution rendering the intermediate Mn hydride more stable; subsequent CO2 insertion appears to be faster than heterolytic H2 production. A comprehensive mechanistic scheme is proposed that illustrates how thermodynamic analysis can provide further insight. Relevant to a range of hydrogenations and reductions is the modulation of the hydricity with substrate binding that makes the reaction favorable. Significantly, this work illustrates a new role for amines in CO2 reduction: changing the product selectivity; this is pertinent more broadly to advancing CCR.
Collapse
Affiliation(s)
- Moumita Bhattacharya
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Sepehr Sebghati
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Ryan T VanderLinden
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| | - Caroline T Saouma
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112, United States
| |
Collapse
|