1
|
Burgert BB, Sun X, Hauser A, Wingering PMR, Breher F, Roesky PW. Bi- and tridentate coordination behaviour of a novel bis(phosphinimino)methanide ligand. Chem Asian J 2024:e202301084. [PMID: 38197668 DOI: 10.1002/asia.202301084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Herein, we report the synthesis of a novel ferrocenyl-functionalized bis(phosphinimino)methane ligand (CH2 (PPh2 NFc)2 ). Deprotonation of CH2 (PPh2 NFc)2 with KN(SiMe3 )2 gave the dimeric species [K{CH(PPh2 NFc)2 }]2 , which was further reacted with ECl2 (E=Ge, Sn) to yield the tetrylene compounds [{CH(PPh2 NFc)2 }ECl]. The ligand and the resulting tetrylenes were examined for their electrochemical properties with the aid of cyclic voltammetry. Furthermore, the reaction of the tetrylenes [{CH(PPh2 NFc)2 }ECl] with [AuC6 F5 (tht)] resulted in the bimetallic complexes [{(AuC6 F5 )CH(PPh2 NFc)2 }ECl] with an unusual Au coordination on the ligand backbone.
Collapse
Affiliation(s)
- Bastian B Burgert
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Adrian Hauser
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Perrine M R Wingering
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Frank Breher
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
2
|
Jain A, Karmakar H, Roesky PW, Panda TK. Role of Bis(phosphinimino)methanides as Universal Ligands in the Coordination Sphere of Metals across the Periodic Table. Chem Rev 2023. [PMID: 38048165 DOI: 10.1021/acs.chemrev.3c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The coordination chemistry of bis(phosphinimino)methanide ligands is widespread and accompanies a large number of metal ions in the periodic table ranging from lithium to neptunium. This unique class of ligand systems show copious coordination chemistry with the main-group, transition, rare-earth, and actinide metals and are considered to be among the most attractive ligand systems to researchers. The bis(phosphinimino)methanide metal complexes offer an extensive range of applications in various fields and have been demonstrated as one of the universal ligand systems to stabilize the metal ions in not only their usual but also their unusual oxidation states. The main-group and transition metal chemistry using bis(phosphinimino)methanides as ligands was last updated almost a decade ago. In this review, we provide a comprehensive overview of various state-of-the-art bis(phosphinimino)methanide-supported metal complexes by dealing with their synthesis, characterization, reactivity, and catalytic studies which were not included in the last critical reviews.
Collapse
Affiliation(s)
- Archana Jain
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology (MGIT), Gandipet-500075, Hyderabad, Telangana, India
| | - Himadri Karmakar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, Sangareddy, Telangana, India
| | - Peter W Roesky
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstr. 15 Geb. 30.45, 76131 Karlsruhe, Germany
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, Sangareddy, Telangana, India
| |
Collapse
|
3
|
Yang H, Xing B, Zhao J, Ma G. Methoxyl-substituted phosphine ligand properties and a case study of formation adducts to indium(III) bromide by DFT calculations. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Abstract
Three oxygen donor gallium(III) halide complexes, [GaX3(O=P(TMP)3] (TMP = trimethoxylphenyl and X = Cl− (1), Br− (2) and I− (3)), are prepared by oxidation in mixed solvents from their phosphine adducts of [GaX3(P(TMP)3]. Three crystalline compounds are obtained from the solutions and their crystal structures are determined in the solid state. It is rare to generate a crystalline phase for metal–adduct compounds of this bulky ligand; in this paper, three new crystal structures are presented.
Collapse
|
5
|
Taher D, Wilson JR, Ritch G, Zeller M, Szymczak NK. Late-stage ligand functionalization via the Staudinger reaction using phosphine-appended 2,2'-bipyridine. Chem Commun (Camb) 2021; 57:5718-5721. [PMID: 33982731 DOI: 10.1039/d1cc01407b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of a phosphine-appended-2,2'-bipyridine ligand ((Ph2P)2bpy) to serve as a platform for late-stage ligand modifications was evaluated using tetrahedral (Ph2P)2bpyFeCl2. We employed a post-metalation Staudinger reaction to install a series of functionalized arenes, including those containing Brønsted and Lewis acidic groups. This reaction sequence represents a versatile strategy to both tune the ligand donor properties as well as directly incorporate appended functionality.
Collapse
Affiliation(s)
- Deeb Taher
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA. and Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Jessica R Wilson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Grayson Ritch
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Matthias Zeller
- H.C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
6
|
Sheng W, Xu X, Zhou S, Zhang X, Huang Z, Du J, Zhang L, Wei Y, Zhu X, Cui P, Wang S. Synthesis and Reactivity of NNNNN-Pincer Multidentate Pyrrolyl Rare-Earth-Metal Amido-Chloride or Dialkyl Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Weiming Sheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xiaolong Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Shuangliu Zhou
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xiuli Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Zeming Huang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Jun Du
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Lijun Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Yun Wei
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xiancui Zhu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Peng Cui
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Shaowu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
- Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People’s Republic of China
| |
Collapse
|