1
|
MacKenzie RE, Hajdu T, Seed JA, Whitehead GFS, Adams RW, Chilton NF, Collison D, McInnes EJL, Goodwin CAP. δ-Bonding modulates the electronic structure of formally divalent nd 1 rare earth arene complexes. Chem Sci 2024:d4sc03005b. [PMID: 39220159 PMCID: PMC11361033 DOI: 10.1039/d4sc03005b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Landmark advances in rare earth (RE) chemistry have shown that divalent complexes can be isolated with non-Aufbau 4f n {5d/6s}1 electron configurations, facilitating remarkable bonding motifs and magnetic properties. We report a series of divalent bis-tethered arene complexes, [RE(NHAriPr6 )2] (2RE; RE = Sc, Y, La, Sm, Eu, Tm, Yb; NHAriPr6 = {N(H)C6H3-2,6-(C6H2-2,4,6-iPr3)2}). Fluid solution EPR spectroscopy gives g iso < 2.002 for 2Sc, 2Y, and 2La, consistent with formal nd1 configurations, calculations reveal metal-arene δ-bonding via mixing of nd(x 2-y 2) valence electrons into arene π* orbitals. Experimental and calculated EPR and UV-Vis-NIR spectroscopic properties for 2Y show that minor structural changes markedly alter the metal d(x 2-y 2) contribution to the SOMO. This contrasts 4f n {5d/6s}1 complexes where the valence d-based electron resides in a non-bonding orbital. Complexes 2Sm, 2Eu, 2Tm, and 2Yb contain highly-localised 4f n+1 ions with no appreciable metal-arene bonding by density functional calculations. These results show that the physicochemical properties of divalent rare earth arene complexes with both formal nd1 and 4f n+1 configurations are nuanced, may be controlled through ligand modification, and require a multi-pronged experimental and theoretical approach to fully rationalise.
Collapse
Affiliation(s)
- Ross E MacKenzie
- Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Tomáš Hajdu
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - John A Seed
- Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - George F S Whitehead
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ralph W Adams
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Research School of Chemistry, The Australian National University Sullivans Creek Road Canberra 2601 Australia
| | - David Collison
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Eric J L McInnes
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
- Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Conrad A P Goodwin
- Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
2
|
Nodaraki L, Ariciu AM, Huh DN, Liu J, Martins DOTA, Ortu F, Winpenny REP, Chilton NF, McInnes EJL, Mills DP, Evans WJ, Tuna F. Ligand Effects on the Spin Relaxation Dynamics and Coherent Manipulation of Organometallic La(II) Potential Qu dits. J Am Chem Soc 2024; 146:15000-15009. [PMID: 38787801 PMCID: PMC11157535 DOI: 10.1021/jacs.3c12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
We present pulsed electron paramagnetic resonance (EPR) studies on three La(II) complexes, [K(2.2.2-cryptand)][La(Cp')3] (1), [K(2.2.2-cryptand)][La(Cp″)3] (2), and [K(2.2.2-cryptand)][La(Cptt)3] (3), which feature cyclopentadienyl derivatives as ligands [Cp' = C5H4SiMe3; Cp″ = C5H3(SiMe3)2; Cptt = C5H3(CMe3)2] and display a C3 symmetry. Long spin-lattice relaxation (T1) and phase memory (Tm) times are observed for all three compounds, but with significant variation in T1 among 1-3, with 3 being the slowest relaxing due to higher s-character of the SOMO. The dephasing times can be extended by more than an order of magnitude via dynamical decoupling experiments using a Carr-Purcell-Meiboom-Gill (CPMG) sequence, reaching 161 μs (5 K) for 3. Coherent spin manipulation is performed by the observation of Rabi quantum oscillations up to 80 K in this nuclear spin-rich environment (1H, 13C, and 29Si). The high nuclear spin of 139La (I = 7/2), and the ability to coherently manipulate all eight hyperfine transitions, makes these molecules promising candidates for application as qudits (multilevel quantum systems featuring d quantum states; d >2) for performing quantum operations within a single molecule. Application of HYSCORE techniques allows us to quantify the electron spin density at ligand nuclei and interrogate the role of functional groups to the electron spin relaxation properties.
Collapse
Affiliation(s)
- Lydia
E. Nodaraki
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Ana-Maria Ariciu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel N. Huh
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
- Department
of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States
of America
| | - Jingjing Liu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - Daniel O. T. A. Martins
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - Fabrizio Ortu
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- School
of Chemistry, University of Leicester, Leicester LE1 7RH, U.K.
| | | | - Nicholas F. Chilton
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Research
School of Chemistry, Australian National
University, Canberra 2617, Australia
| | - Eric J. L. McInnes
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
| | - William J. Evans
- Department
of Chemistry, University of California, Irvine, California 92697, United States
of America
| | - Floriana Tuna
- Department
of Chemistry, University of Manchester, Manchester M13 9PL, U.K.
- Photon
Science Institute, University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
4
|
Wedal JC, Anderson-Sanchez LM, Dumas MT, Gould CA, Beltrán-Leiva MJ, Celis-Barros C, Páez-Hernández D, Ziller JW, Long JR, Evans WJ. Synthesis and Crystallographic Characterization of a Reduced Bimetallic Yttrium ansa-Metallocene Hydride Complex, [K(crypt)][(μ-Cp An)Y(μ-H)] 2 (Cp An = Me 2Si[C 5H 3(SiMe 3)-3] 2), with a 3.4 Å Yttrium-Yttrium Distance. J Am Chem Soc 2023; 145:10730-10742. [PMID: 37133919 DOI: 10.1021/jacs.3c01405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The reduction of a bimetallic yttrium ansa-metallocene hydride was examined to explore the possible formation of Y-Y bonds with 4d1 Y(II) ions. The precursor [CpAnY(μ-H)(THF)]2 (CpAn = Me2Si[C5H3(SiMe3)-3]2) was synthesized by hydrogenolysis of the allyl complex CpAnY(η3-C3H5)(THF), which was prepared from (C3H5)MgCl and [CpAnY(μ-Cl)]2. Treatment of [CpAnY(μ-H)(THF)]2 with excess KC8 in the presence of one equivalent of 2.2.2-cryptand (crypt) generates an intensely colored red-brown product crystallographically identified as [K(crypt)][(μ-CpAn)Y(μ-H)]2. The two rings of each CpAn ligand in the reduced anion [(μ-CpAn)Y(μ-H)]21- are attached to two yttrium centers in a "flyover" configuration. The 3.3992(6) and 3.4022(7) Å Y···Y distances between the equivalent metal centers within two crystallographically independent complexes are the shortest Y···Y distances observed to date. Ultraviolet-visible (UV-visible)/near infrared (IR) and electron paramagnetic resonance (EPR) spectroscopy support the presence of Y(II), and theoretical analysis describes the singly occupied molecular orbital (SOMO) as an Y-Y bonding orbital composed of metal 4d orbitals mixed with metallocene ligand orbitals. A dysprosium analogue, [K(18-crown-6)(THF)2][(μ-CpAn)Dy(μ-H)]2, was also synthesized, crystallographically characterized, and studied by variable temperature magnetic susceptibility. The magnetic data are best modeled with the presence of one 4f9 Dy(III) center and one 4f9(5dz2)1 Dy(II) center with no coupling between them. CASSCF calculations are consistent with magnetic measurements supporting the absence of coupling between the Dy centers.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | | | - Megan T Dumas
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Colin A Gould
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - María J Beltrán-Leiva
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS), Universidad Andres Bello, Santiago 8370146, Chile
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Bokouende SS, Jenks TC, Ward CL, Allen MJ. Solid-state and solution-phase characterization of Sm II-aza[2.2.2]cryptate and its methylated analogue. Dalton Trans 2022; 51:10852-10855. [PMID: 35781473 PMCID: PMC9650674 DOI: 10.1039/d2dt01823c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new SmII-azacryptates are reported that differ in steric hindrance and Lewis basicity of donor atoms. The sterically hindered complex has a smaller coordination number and a more negative electrochemical potential than the complex with less steric hindrance.
Collapse
Affiliation(s)
| | - Tyler C Jenks
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| | - Cassandra L Ward
- Lumigen Instrument Center, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA
| | - Matthew J Allen
- Deparptment of Chemistry, Wayne State University, 5101 Cass Ave., Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Trinh MT, Wedal JC, Evans WJ. Evaluating electrochemical accessibility of 4f n5d 1 and 4f n+1 Ln(II) ions in (C 5H 4SiMe 3) 3Ln and (C 5Me 4H) 3Ln complexes. Dalton Trans 2021; 50:14384-14389. [PMID: 34569559 DOI: 10.1039/d1dt02427b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction potentials (reported vs. Fc+/Fc) for a series of Cp'3Ln complexes (Cp' = C5H4SiMe3, Ln = lanthanide) were determined via electrochemistry in THF with [nBu4N][BPh4] as the supporting electrolyte. The Ln(III)/Ln(II) reduction potentials for Ln = Eu, Yb, Sm, and Tm (-1.07 to -2.83 V) follow the expected trend for stability of 4f7, 4f14, 4f6, and 4f13 Ln(II) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4fn5d1 Ln(II) ions (n = 2-14), fall in a narrow range of -2.95 V to -3.14 V. Only cathodic events were observed for La and Ce at -3.36 V and -3.43 V, respectively. The reduction potentials of the Ln(II) compounds [K(2.2.2-cryptand)][Cp'3Ln] (Ln = Pr, Sm, Eu) match those of the Cp'3Ln complexes. The reduction potentials of nine (C5Me4H)3Ln complexes were also studied and found to be 0.05-0.24 V more negative than those of the Cp'3Ln compounds.
Collapse
Affiliation(s)
- Michael T Trinh
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - Justin C Wedal
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| | - William J Evans
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA.
| |
Collapse
|
7
|
Moore WNG, Ziller JW, Evans WJ. Optimizing Alkali Metal (M) and Chelate (L) Combinations for the Synthesis and Stability of [M(L)][(C 5H 4SiMe 3) 3Y] Yttrium(II) Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William N. G. Moore
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - William J. Evans
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Solís-Cespedes E, Páez-Hernández D. Magnetic properties of organolanthanide(II) complexes, from the electronic structure and the crystal field effect. Dalton Trans 2021; 50:9787-9795. [PMID: 34180487 DOI: 10.1039/d1dt01494c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic properties of a series of organometallic complexes [LnCp3]- and Ln(CNT)2, where Cp = cyclopentadienyl and CNT = cyclononatetraenyl, of the lanthanide ions in the 2+ oxidation state, are theoretically studied in terms of the electronic structure obtained via multiconfigurational wave function-based methods. Calculations are performed for two groups of ion complexes selected based on their preferred electronic configuration 4fn+1 or 4fn5d1 (n is the number of f electrons in the 3+ ion). All the properties are discussed in terms of the electron density distribution of the ground state and ligand field effects. This analysis allows giving some molecular design strategies relevant to exploit the magnetic properties in applications like Single-Molecule Magnets (SMMs) for lanthanide ions in the 2+ oxidation state.
Collapse
Affiliation(s)
- Eduardo Solís-Cespedes
- Escuela de Bioingeniería Médica, Facultad de Medicina, Universidad Católica del Maule, Chile. and Laboratorio de Bioinformática y Química Computacional, Facultad de Medicina, Universidad Católica del Maule, Chile
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS), Universidad Andres Bello, República 330, Santiago, Chile. and Departamento de Ciencias Químicas, Universidad Andres Bello, República 275, Santiago, Chile
| |
Collapse
|
9
|
Wedal JC, Barlow JM, Ziller JW, Yang JY, Evans WJ. Electrochemical studies of tris(cyclopentadienyl)thorium and uranium complexes in the +2, +3, and +4 oxidation states. Chem Sci 2021; 12:8501-8511. [PMID: 34221331 PMCID: PMC8221189 DOI: 10.1039/d1sc01906f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
Electrochemical measurements on tris(cyclopentadienyl)thorium and uranium compounds in the +2, +3, and +4 oxidation states are reported with C5H3(SiMe3)2, C5H4SiMe3, and C5Me4H ligands. The reduction potentials for both U and Th complexes trend with the electron donating abilities of the cyclopentadienyl ligand. Thorium complexes have more negative An(iii)/An(ii) reduction potentials than the uranium analogs. Electrochemical measurements of isolated Th(ii) complexes indicated that the Th(iii)/Th(ii) couple was surprisingly similar to the Th(iv)/Th(iii) couple in Cp''-ligated complexes. This suggested that Th(ii) complexes could be prepared from Th(iv) precursors and this was demonstrated synthetically by isolation of directly from UV-visible spectroelectrochemical measurements and reactions of with elemental barium indicated that the thorium system undergoes sequential one electron transformations.
Collapse
Affiliation(s)
- Justin C Wedal
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Jeffrey M Barlow
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Joseph W Ziller
- Department of Chemistry, University of California Irvine California 92697 USA
| | - Jenny Y Yang
- Department of Chemistry, University of California Irvine California 92697 USA
| | - William J Evans
- Department of Chemistry, University of California Irvine California 92697 USA
| |
Collapse
|