1
|
Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B, Berton HS, Wu Z, Nicewicz DA, Li Z. One-Step Synthesis of [ 18F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:1609-1618. [PMID: 39220691 PMCID: PMC11363353 DOI: 10.1021/acscentsci.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.
Collapse
Affiliation(s)
- Manshu Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Carla Staton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xinrui Ma
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Weiling Zhao
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Liqin Pan
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ben Giglio
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Haiden S. Berton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Zhanhong Wu
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - David A. Nicewicz
- Department
of Chemistry University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599 United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
2
|
Ozenil M, Kogler L, Mair BA, Hacker M, Wadsak W, Rotstein BH, Pichler V. Intramolecular Friedel-Crafts Acylation of [ 11C]Isocyanates Enabling the Radiolabeling of [carbonyl- 11C]DPQ. Chemistry 2024; 30:e202400581. [PMID: 38470445 DOI: 10.1002/chem.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
α,β-aromatic lactams are highly abundant in biologically active molecules, yet so far they cannot be radiolabeled with short-lived (t1/2=20.3 min), β+-decaying carbon-11, which has prevented their application as positron emission tomography tracers. Herein, we developed, optimized, and applied a widely applicable, one-pot, quick, robust and automatable radiolabeling method for α,β-aromatic lactams starting from [11C]CO2 using the reagent POCl3⋅AlCl3. This method proceeds via intramolecular Friedel-Crafts acylation of in situ formed [11C]isocyanates and shows a broad substrate scope for the formation of five- and six-membered rings. We implemented our developed labeling method for the radiosynthesis of the potential PARP1 PET tracer [carbonyl-11C]DPQ in a clinical radiotracer production facility following the standards of the European Pharmacopoeia.
Collapse
Affiliation(s)
- Marius Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Lukas Kogler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010, Graz, Austria
| | - Braeden A Mair
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt, Ottawa, ON, K1 N 6 N5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4 W7, Canada
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, Stiftingtalstraße 5, 8010, Graz, Austria
| | - Benjamin H Rotstein
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt, Ottawa, ON, K1 N 6 N5, Canada
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4 W7, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8 M5, Canada
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| |
Collapse
|
3
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
4
|
Liu N, Wu X, Qu J, Chen Y. Nickel-Catalyzed Aminocarbonylation of Aryl Iodides with 1 atm CO. Chem Asian J 2023; 18:e202201061. [PMID: 36373896 DOI: 10.1002/asia.202201061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Reported here is a nickel-catalyzed aminocarbonylation of aromatic iodides with (hetero)aryl anilines and alkyl amines under atmospheric CO pressure. The reaction features with broad substrate scope with excellent functional group tolerance, providing an expedient method for the construction of amide analogues. Notably, amino alcohols can be selectively transformed into the corresponding amides successfully without interfering the hydroxyl group under the current standard conditions.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science& Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Wu Y, Nan T, Ji X, Liu B, Cui D. A Facile Approach to Produce Star Polymers Based on Coordination Polymerization. Angew Chem Int Ed Engl 2022; 61:e202205894. [DOI: 10.1002/anie.202205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Wu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Tianhao Nan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Bo Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| |
Collapse
|
6
|
Wu Y, Nan T, Ji X, Liu B, Cui D. A Facile Approach to Produce Star Polymers Based on Coordination Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Wu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Tianhao Nan
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Bo Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 China
- University of Science and Technology of China Department of Polymer Science and Engineering Hefei 230026 China
| |
Collapse
|
7
|
Kumar V, Dhawan S, Girase PS, Singh P, Karpoormath R. An Environmentally Benign, Catalyst‐Free N−C Bond Cleavage/Formation of Primary, Secondary, and Tertiary Unactivated Amides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vishal Kumar
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Pankaj Sanjay Girase
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| | - Parvesh Singh
- School of Chemistry and Physics University of KwaZulu-Natal P/Bag X54001, Westville Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry Discipline of Pharmaceutical Sciences College of Health Sciences University of KwaZulu-Natal (Westville) Durban 4000 South Africa
| |
Collapse
|
8
|
Ismailani US, Munch M, Mair BA, Rotstein BH. Interrupted aza-Wittig reactions using iminophosphoranes to synthesize 11C-carbonyls. Chem Commun (Camb) 2021; 57:5266-5269. [PMID: 33942043 DOI: 10.1039/d1cc01016f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct CO2-fixation methodology couples structurally diverse iminophosphoranes with various nucleophiles to synthesize ureas, carbamates, thiocarbamates, and amides, and is amenable for 11C radiolabeling. This methodology is practical, as demonstrated by the synthesis of >35 products and isolation of the molecular imaging radiopharmaceuticals [11C]URB694 and [11C]glibenclamide.
Collapse
Affiliation(s)
- Uzair S Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada
| | - Braeden A Mair
- University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada. and University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, Canada and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| |
Collapse
|
9
|
Yi MJ, Zhang HX, Xiao TF, Zhang JH, Feng ZT, Wei LP, Xu GQ, Xu PF. Photoinduced Metal-Free α-C(sp3)–H Carbamoylation of Saturated Aza-Heterocycles via Rationally Designed Organic Photocatalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ming-Jun Yi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huan-Xin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ji-Hua Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Tao Feng
- Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States
| | - Li-Pu Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|