1
|
Gruber F, McDonagh AW, Rose V, Hunter J, Guasch L, Martin RE, Geigle SN, Britton R. sp 3 -Rich Heterocycle Synthesis on DNA: Application to DNA-Encoded Library Production. Angew Chem Int Ed Engl 2024; 63:e202319836. [PMID: 38330151 DOI: 10.1002/anie.202319836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
DNA encoded library (DEL) synthesis represents a convenient means to produce, annotate and store large collections of compounds in a small volume. While DELs are well suited for drug discovery campaigns, the chemistry used in their production must be compatible with the DNA tag, which can limit compound class accessibility. As a result, most DELs are heavily populated with peptidomimetic and sp2 -rich molecules. Herein, we show that sp3 -rich mono- and bicyclic heterocycles can be made on DNA from ketochlorohydrin aldol products through a reductive amination and cyclization process. The resulting hydroxypyrrolidines possess structural features that are desirable for DELs and target a distinct region of pharmaceutically relevant chemical space.
Collapse
Affiliation(s)
- Felix Gruber
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Anthony W McDonagh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Victoria Rose
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - James Hunter
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Rainer E Martin
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Stefanie N Geigle
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
2
|
Wang G, Tan Y, Zou H, Sui X, Wang Z, Satz AL, Kuai L, Su W, Zhang Q. DNA-Compatible Cyclization Reaction to Access 1,3,4-Oxadiazoles and 1,2,4-Triazoles. Org Lett 2024; 26:1353-1357. [PMID: 38335275 DOI: 10.1021/acs.orglett.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
DNA-encoded chemical library (DECL) technology is a commonly employed screening platform in both the pharmaceutical industry and academia. To expand the chemical space of DECLs, new and robust DNA-compatible reactions are sought after. In particular, DNA-compatible cyclization reactions are highly valued, as these reactions tend to be atom economical and thus may provide lead- and drug-like molecules. Herein, we report two new methodologies employing DNA-conjugated thiosemicarbazides as a common precursor, yielding highly substituted 1,3,4-oxadiazoles and 1,2,4-triazoles. These two novel DNA-compatible reactions feature a high conversion efficiency and broad substrate scope under mild conditions that do not observably degrade DNA.
Collapse
Affiliation(s)
- Gaonan Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yu Tan
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hanzhi Zou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xihang Sui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhanlong Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
3
|
Ma P, Zhang S, Huang Q, Gu Y, Zhou Z, Hou W, Yi W, Xu H. Evolution of chemistry and selection technology for DNA-encoded library. Acta Pharm Sin B 2024; 14:492-516. [PMID: 38322331 PMCID: PMC10840438 DOI: 10.1016/j.apsb.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 02/08/2024] Open
Abstract
DNA-encoded chemical library (DEL) links the power of amplifiable genetics and the non-self-replicating chemical phenotypes, generating a diverse chemical world. In analogy with the biological world, the DEL world can evolve by using a chemical central dogma, wherein DNA replicates using the PCR reactions to amplify the genetic codes, DNA sequencing transcripts the genetic information, and DNA-compatible synthesis translates into chemical phenotypes. Importantly, DNA-compatible synthesis is the key to expanding the DEL chemical space. Besides, the evolution-driven selection system pushes the chemicals to evolve under the selective pressure, i.e., desired selection strategies. In this perspective, we summarized recent advances in expanding DEL synthetic toolbox and panning strategies, which will shed light on the drug discovery harnessing in vitro evolution of chemicals via DEL.
Collapse
Affiliation(s)
- Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Shuning Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qianping Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Wang H, Zhao G, Zhang T, Li Y, Zhang G, Li Y. Comparative Study of DNA Barcode Integrity Evaluation Approaches in the Early-Stage Development of DNA-Compatible Chemical Transformation. ACS Pharmacol Transl Sci 2023; 6:1724-1733. [PMID: 37974618 PMCID: PMC10644510 DOI: 10.1021/acsptsci.3c00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 11/19/2023]
Abstract
DNA-encoded libraries (DEL) have emerged as an important drug discovery technical platform for target-based compound library selection. The success rate of DEL depends on both the chemical diversity of combinatorial libraries and the accuracy of DNA barcoding. Therefore, it is critical that the chemistry applied to library construction should efficiently transform on a wide range of substrates while preserving the integrity of DNA tags. Although several analytical methods have been developed to measure DNA damage caused by DEL chemical reactions, efficient and cost-effective evaluation criteria for DNA damage detection are still demanding. Herein, we set standards for evaluating the DNA compatibility of chemistry development at the laboratory level. Based on four typical DNA damage models of three different DEL formats, we evaluated the detection capabilities of four analytical methods, including ultraperformance liquid chromatography (UPLC-MS), electrophoresis, quantitative polymerase chain reaction (qPCR), and Sanger sequencing. This work systematically revealed the scope and capability of different analytical methods in assessing DNA damages caused by chemical transformation. Based on the results, we recommended UPLC-MS and qPCR as efficient methods for DNA barcode integrity analysis in the early-stage development of DNA-compatible chemistry. Meanwhile, we identified that Sanger sequencing was unreliable to assess DNA damage in this application.
Collapse
Affiliation(s)
- Huicong Wang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Tianyang Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
5
|
Pan K, Yao Y, Zhang Y, Gu Y, Wang Y, Ma P, Hou W, Yang G, Zhang S, Xu H. Enolate-Azide [3 + 2]-Cycloaddition Reaction Suitable for DNA-Encoded Library Synthesis. Bioconjug Chem 2023; 34:1459-1466. [PMID: 37443440 DOI: 10.1021/acs.bioconjchem.3c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The DNA-encoded chemical library (DEL) is a powerful hit selection technique in either basic science or innovative drug discovery. With the aim to circumvent the issue concerning DNA barcode damage in a conventional on-DNA copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), we have successfully developed the first DNA-compatible enolate-azide [3 + 2] cycloaddition reaction. The merits of this DEL chemistry include metal-free reaction and high DNA fidelity, high conversions and easy operation, broad substrate scope, and ready access to the highly substituted 1,4,5-trisubstituted triazoles. Thus, it will not only further enrich the DEL chemistry toolbox but also will have great potential in practical DEL synthesis.
Collapse
Affiliation(s)
- Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wei Hou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
6
|
Wong CHA, Hubert JG, Sparrow KJ, Harris LD, Tyler PC, Brimble MA. Expedient synthesis of imino-C-nucleoside fleximers featuring a one-pot procedure to prepare aryl triazoles. Org Biomol Chem 2023; 21:6134-6140. [PMID: 37462413 DOI: 10.1039/d3ob00956d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nucleoside analogues such as the antiviral agents galidesivir and ribavirin are of synthetic interest. This work reports a "one-pot" preparation of similar fleximers using a bifunctional copper catalyst that generates the aryl azide in situ, which is captured by a terminal alkyne to effect triazole formation.
Collapse
Affiliation(s)
- C H Andy Wong
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Jonathan G Hubert
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Kevin J Sparrow
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Lawrence D Harris
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| | - Peter C Tyler
- Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Rd, Lower Hutt 5040, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
| |
Collapse
|
7
|
Wang Y, Fang X, Liao H, Zhang G, Li Y, Li Y. DNA-Compatible Synthesis of Thiazolidione Derivatives via Three-Component Annulation and Knoevenagel Condensation. Org Lett 2023; 25:4473-4477. [PMID: 37306473 DOI: 10.1021/acs.orglett.3c01482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thiazolidione, conferring drug-like properties, is an important heterocycle that widely exists in medicinally relevant molecules. In this work, by efficiently assembling various DNA-tagged primary amines, abundant aryl isothiocyanates, and ethyl bromoacetate, we present a DNA-compatible three-component annulation to generate a 2-iminothiazolidin-4-one scaffold, which was further decorated via Knoevenagel condensation by employing (hetero)aryl and alkyl aldehydes. These thiazolidione derivatives should find broad use in focused DNA-encoded library construction.
Collapse
Affiliation(s)
- Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Huilin Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Wen X, Wu X, Jin R, Lu X. Privileged heterocycles for DNA-encoded library design and hit-to-lead optimization. Eur J Med Chem 2023; 248:115079. [PMID: 36669370 DOI: 10.1016/j.ejmech.2022.115079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
It is well known that heterocyclic compounds play a key role in improving drug activity, target selectivity, physicochemical properties as well as reducing toxicity. In this review, we summarized the representative heterocyclic structures involved in hit compounds which were obtained from DNA-encoded library from 2013 to 2021. In some examples, the state of the art in heterocycle-based DEL synthesis and hit-to-lead optimization are highlighted. We hope that more and more novel heterocycle-based DEL toolboxes and in-depth pharmaceutical research on these lead compounds can be developed to accelerate the discovery of new drugs.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Rui Jin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China.
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
9
|
Zhao G, Wang H, Luo J, He X, Xiong F, Li Y, Zhang G, Li Y. Multicomponent DNA-Compatible Synthesis of an Annelated Benzodiazepine Scaffold for Focused Chemical Libraries. Org Lett 2023; 25:665-670. [PMID: 36693020 DOI: 10.1021/acs.orglett.2c04293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Annelated benzodiazepines are attractive drug-like scaffolds with a broad spectrum of biological activities. Incorporation of this heterocyclic core into DNA-encoded chemical libraries (DELs) via multicomponent assembly is highly demanded. Herein, we developed a DNA-compatible method to generate the tricyclic benzodiazepine scaffold via catalyst-free three-component condensation using a broad range of aldehyde, o-phenylenediamine, and diketone sources. With either aldehyde or o-phenylenediamine conjugated with DNA tags, functionalized 1,5-benzodiazepine scaffolds were efficiently forged, expanding the chemical space of the diazepine-centered drug-like DEL.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China
| | - Jie Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
10
|
Scott SK. On-DNA-1,2,3-Triazole Formation via Click Reaction. Methods Mol Biol 2022; 2541:39-43. [PMID: 36083541 DOI: 10.1007/978-1-0716-2545-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Copper-catalyzed azide-alkyne cycloaddition (CuAAC) provides a simple and convenient strategy to synthesize diverse 1,2,3-triazoles for drug discovery. Described herein is a protocol for the CuSO4-catalyzed cycloaddition between alkynes and DNA-appended azides.
Collapse
Affiliation(s)
- Sarah K Scott
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, Cambridge, MA, USA.
| |
Collapse
|
11
|
Fair RJ, Walsh RT, Hupp CD. The expanding reaction toolkit for DNA-encoded libraries. Bioorg Med Chem Lett 2021; 51:128339. [PMID: 34478840 DOI: 10.1016/j.bmcl.2021.128339] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Over the past decade, DNA-encoded libraries (DELs) have emerged as a leading platform for small molecule drug discovery among pharmaceutical companies, biotech companies and academic drug hunters alike. This revolutionary technology has tremendous potential that is yet to be fully realized, as the exploration of therapeutically relevant chemical space is fueled by the ever-expanding repertoire of DNA-compatible reactions used to construct the libraries. Advances in direct coupling reactions, like photo-catalytic cross couplings, unique cyclizations such as the formation of 1,2,4-oxadiazoles, and new functional group transformations are valuable contributions to the DEL reaction toolkit, and indicate where future reaction development efforts should focus in order to maximize the productivity of DELs.
Collapse
Affiliation(s)
| | - Ryan T Walsh
- X-Chem Inc., 100 Beaver Street, Waltham, MA 02453, USA
| | | |
Collapse
|
12
|
Chardet C, Payrastre C, Gerland B, Escudier JM. Convertible and Constrained Nucleotides: The 2'-Deoxyribose 5'-C-Functionalization Approach, a French Touch. Molecules 2021; 26:5925. [PMID: 34641475 PMCID: PMC8512084 DOI: 10.3390/molecules26195925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Many strategies have been developed to modulate the biological or biotechnical properties of oligonucleotides by introducing new chemical functionalities or by enhancing their affinity and specificity while restricting their conformational space. Among them, we review our approach consisting of modifications of the 5'-C-position of the nucleoside sugar. This allows the introduction of an additional chemical handle at any position on the nucleotide chain without disturbing the Watson-Crick base-pairing. We show that 5'-C bromo or propargyl convertible nucleotides (CvN) are accessible in pure diastereoisomeric form, either for nucleophilic displacement or for CuAAC conjugation. Alternatively, the 5'-carbon can be connected in a stereo-controlled manner to the phosphate moiety of the nucleotide chain to generate conformationally constrained nucleotides (CNA). These allow the precise control of the sugar/phosphate backbone torsional angles. The consequent modulation of the nucleic acid shape induces outstanding stabilization properties of duplex or hairpin structures in accordance with the preorganization concept. Some biological applications of these distorted oligonucleotides are also described. Effectively, the convertible and the constrained approaches have been merged to create constrained and convertible nucleotides (C2NA) providing unique tools to functionalize and stabilize nucleic acids.
Collapse
Affiliation(s)
| | | | - Béatrice Gerland
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| | - Jean-Marc Escudier
- Laboratoire de Synthèse et Physico-Chimie de Molécules d′Intérêt Biologique, UMR CNRS 5068, Université Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (C.C.); (C.P.)
| |
Collapse
|
13
|
Wang W, Zhang X, Huang R, Hirschbiegel CM, Wang H, Ding Y, Rotello VM. In situ activation of therapeutics through bioorthogonal catalysis. Adv Drug Deliv Rev 2021; 176:113893. [PMID: 34333074 PMCID: PMC8440397 DOI: 10.1016/j.addr.2021.113893] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | | | - Huaisong Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
14
|
An Y, Yan H, Dong Z, Satz AL. DNA-Compatible Click Reaction Employing In Situ Generated Azides from Boronic Acids. Curr Protoc 2021; 1:e125. [PMID: 33956399 DOI: 10.1002/cpz1.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An efficient method for the synthesis of DNA-conjugated 1,2,3-triazoles is copper (II) [Cu(II)-β-cyclodextrin]-mediated Huisgen cycloaddition ("click reaction") of DNA-conjugated alkynes with azides. However, a diverse array of building blocks is required to produce useful DNA encoded libraries, and the commercial availability of azides is limited. The method described herein generates azides in situ from aryl borates and TMSN3 , which then further react with DNA-conjugated terminal alkynes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Conjugation of PEG linker to DNA headpiece Basic Protocol 2: DNA conjugated terminal alkyne preparation Basic Protocol 3: DNA compatible one-pot click reaction Basic Protocol 4: LCMS monitoring.
Collapse
Affiliation(s)
- Yulong An
- HitS Business Unit, WuXi AppTec, Shanghai, China
| | - Hao Yan
- HitS Business Unit, WuXi AppTec, Shanghai, China
| | | | | |
Collapse
|
15
|
Lenci E, Baldini L, Trabocchi A. Diversity-oriented synthesis as a tool to expand the chemical space of DNA-encoded libraries. Bioorg Med Chem 2021; 41:116218. [PMID: 34030087 DOI: 10.1016/j.bmc.2021.116218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
DNA-encoded libraries (DEL) represent a powerful technology for generating compound collections for drug discovery campaigns, that have allowed for the selection of many hit compounds over last three decades. However, the application of split-and-pool combinatorial methodologies, as well as the limitation imposed by DNA-compatible chemistry, has often brought to a limited exploration of the chemical space, with an over-representation of flat aromatic or peptide-like structures, whereas a higher scaffold complexity is generally associated with a more successful biological activity of the library. In this context, the application of Diversity-Oriented Synthesis, capable of creating sp3-rich molecular entities even starting from simple flat building blocks, can represent an efficient strategy to significantly broaden the chemical space explored by DELs. In this review, we present selected examples of DNA-compatible complexity-generating reactions that can be applied for the generation of DNA-encoded DOS libraries, including: (i) multicomponent reactions; (ii) C-H/C-X functionalization; (iii) tandem approaches; (iv) cycloadditions; (v) reactions introducing privileged elements. Also, selected case studies on the generation of DELs with high scaffold diversity are discussed, reporting their application in drug discovery programs.
Collapse
Affiliation(s)
- Elena Lenci
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Baldini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; Interdepartmental Center for Preclinical Development of Molecular Imaging (CISPIM), University of Florence, Viale Morgagni 85, 50134 Florence, Italy.
| |
Collapse
|
16
|
Liu W, Huang W, Lin Q, Tsai MH, Zhang R, Fan L, Scott JD, Liu G, Wan J. Development of DNA-compatible hydroxycarbonylation reactions using chloroform as a source of carbon monoxide. Bioorg Med Chem 2021; 38:116118. [PMID: 33839592 DOI: 10.1016/j.bmc.2021.116118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
A robust palladium-catalyzed hydroxycarbonylation of aryl halides on DNA has been developed. Instead of Mo(CO)6 as a source of carbon monoxide as previously described in the literature, chloroform was used as a surrogate in this report for the purpose of avoiding to use a large excess of molybdenum reagent which is not totally soluble in aqueous reaction mixtures.
Collapse
Affiliation(s)
- Wentao Liu
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Wei Huang
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Qian Lin
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Mei-Hsuan Tsai
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China
| | - Rui Zhang
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Lijun Fan
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | - Jack D Scott
- New Jersey Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States.
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China.
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu 1(st) East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, PR China.
| |
Collapse
|
17
|
Wu R, Du T, Sun W, Shaginian A, Gao S, Li J, Wan J, Liu G. Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C–H Activation of N-Aryl Tertiary Amines. Org Lett 2021; 23:3486-3490. [DOI: 10.1021/acs.orglett.1c00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongfeng Wu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Wenbo Sun
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
18
|
Shi Y, Wu YR, Yu JQ, Zhang WN, Zhuang CL. DNA-encoded libraries (DELs): a review of on-DNA chemistries and their output. RSC Adv 2021; 11:2359-2376. [PMID: 35424149 PMCID: PMC8693808 DOI: 10.1039/d0ra09889b] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
A DNA-encoded library is a collection of small molecules covalently linked to DNA that has unique information about the identity and the structure of each library member. A DNA-encoded chemical library (DEL) is broadly adopted by major pharmaceutical companies and used in numerous drug discovery programs. The application of the DEL technology is advantageous at the initial period of drug discovery because of reduced cost, time, and storage space for the identification of target compounds. The key points for the construction of DELs comprise the development and the selection of the encoding methods, transfer of routine chemical reaction from off-DNA to on-DNA, and exploration of new chemical reactions on DNA. The limitations in the chemical space and the diversity of DEL were reduced gradually by using novel DNA-compatible reactions based on the formation and the cleavage of various bonds. Here, we summarized a series of novel DNA-compatible chemistry reactions for DEL building blocks and analysed the druggability of screened hit molecules via DELs in the past five years.
Collapse
Affiliation(s)
- Ying Shi
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Yan-Ran Wu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jian-Qiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Wan-Nian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Chun-Lin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| |
Collapse
|
19
|
Du HC, Matzuk MM, Chen YC. Synthesis of 5-substituted tetrazoles via DNA-conjugated nitrile. Org Biomol Chem 2020; 18:9221-9226. [PMID: 33174894 DOI: 10.1039/d0ob02021d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A zinc bromide-catalyzed synthesis of 5-substituted tetrazoles via DNA-conjugated nitriles using sodium azide has been developed. The protocol offered moderate to excellent yields of tetrazoles with a broad range of substrates, including a variety of functionalized aromatic, heterocyclic, and aliphatic nitriles. In addition, the electronic effect within the substrate scope was evaluated. DNA fidelity was assessed by ligation efficiency and amplifiability analysis. The ability to generate tetrazoles expands the diversity of heterocycles in the preparation of DNA-encoded chemical libraries.
Collapse
Affiliation(s)
- Huang-Chi Du
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | - Martin M Matzuk
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | - Ying-Chu Chen
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
20
|
Wen H, Ge R, Qu Y, Sun J, Shi X, Cui W, Yan H, Zhang Q, An Y, Su W, Yang H, Kuai L, Satz AL, Peng X. Synthesis of 1,2-Amino Alcohols by Photoredox-Mediated Decarboxylative Coupling of α-Amino Acids and DNA-Conjugated Carbonyls. Org Lett 2020; 22:9484-9489. [DOI: 10.1021/acs.orglett.0c03461] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Huanan Wen
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Rui Ge
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yi Qu
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jialin Sun
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xiaodong Shi
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Weiren Cui
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hao Yan
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yulong An
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Wenji Su
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongfang Yang
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Letian Kuai
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Alexander L. Satz
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xuanjia Peng
- WuXi AppTec (Shanghai) Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|