1
|
De Nardi F, Gorreta G, Meazzo C, Parisotto S, Blangetti M, Prandi C. Wittig Reaction in Deep Eutectic Solvents: Expanding the DES Toolbox in Synthesis. Chemistry 2024; 30:e202402090. [PMID: 38945826 DOI: 10.1002/chem.202402090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/02/2024]
Abstract
Wittig reaction between substituted phosphonium salts and (hetero)aromatic and alkyl carbonyl compounds in Deep Eutectic Solvents has been developed under a scalable and friendly protocol. Highly efficient reactions were successfully run with a wide range of bases including organic (DBU, LiTMP, t-BuOK) and inorganic (NaOH, K2CO3) ones in ChCl/Gly 1 : 2 (mol/mol) as solvent under mild conditions, at room temperature and under air. The proposed protocol was applied to a wide range of substrates, including (hetero)aromatic aldehydes with substituents as halogens (I, Br, Cl), EDG (alkoxy, methyl), EWG (NO2, CF3) or reactive groups as CN, esters, and ketones. Vinylic, alkynyl and cycloalkyl, alicyclic and α,β-unsaturated aldehydes can also be used. Highly electrophilic ketones gave good yields. The diastereoselectivity of the reaction is in complete agreement with the E/Z ratio predictable under traditional conditions. We demonstrated that the protocol is scalable to 2 g (5 mmol) of phosphonium salt, furthermore the proposed workup protocol allows to remove TPPO without need of additional chromatographic purification.
Collapse
Affiliation(s)
- Federica De Nardi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Giulia Gorreta
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Carolina Meazzo
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Stefano Parisotto
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Marco Blangetti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| | - Cristina Prandi
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, I-10125, Torino, Italy
| |
Collapse
|
2
|
Rosales J, Jiménez T, Chahboun R, Huertos MA, Millán A, Justicia J. Mild and Selective Hydrogenation of Unsaturated Compounds Using Mn/Water as a Hydrogen Gas Source. Org Lett 2024; 26:2147-2151. [PMID: 38096174 DOI: 10.1021/acs.orglett.3c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
A mild and highly selective reduction of alkenes and alkynes using Mn/water is described. The highly controlled generation of H2 allows the selective reduction of these compounds in the presence of labile functional groups under mild and environmentally acceptable conditions.
Collapse
Affiliation(s)
- Jennifer Rosales
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Tania Jiménez
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - Miguel A Huertos
- University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alba Millán
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| | - José Justicia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Gutiérrez-Blanco M, Algarra AG, Guillamón E, Fernández-Trujillo MJ, Oliva M, Basallote MG, Llusar R, Safont VS. Spin-Crossing in the ( Z)-Selective Alkyne Semihydrogenation Mechanism Catalyzed by Mo 3S 4 Clusters: A Density Functional Theory Exploration. Inorg Chem 2024; 63:1000-1009. [PMID: 38173271 DOI: 10.1021/acs.inorgchem.3c03057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Semihydrogenation of internal alkynes catalyzed by the air-stable imidazolyl amino [Mo3S4Cl3(ImNH2)3]+ cluster selectively affords the (Z)-alkene under soft conditions in excellent yields. Experimental results suggest a sulfur-based mechanism with the formation of a dithiolene adduct through interaction of the alkyne with the bridging sulfur atoms. However, computational studies indicate that this mechanism is unable to explain the experimental outcome: mild reaction conditions, excellent selectivity toward the (Z)-isomer, and complete deuteration of the vinylic positions in the presence of CD3OD and CH3OD. An alternative mechanism that explains the experimental results is proposed. The reaction begins with the hydrogenation of two of the Mo3(μ3-S)(μ-S)3 bridging sulfurs to yield a bis(hydrosulfide) intermediate that performs two sequential hydrogen atom transfers (HAT) from the S-H groups to the alkyne. The first HAT occurs with a spin change from singlet to triplet. After the second HAT, the singlet state is recovered. Although the dithiolene adduct is more stable than the hydrosulfide species, the large energy required for the subsequent H2 addition makes the system evolve via the second alternative pathway to selectively render the (Z)-alkene with a lower overall activation barrier.
Collapse
Affiliation(s)
- María Gutiérrez-Blanco
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - Andrés G Algarra
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz 11510, Spain
| | - Eva Guillamón
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - M Jesús Fernández-Trujillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz 11510, Spain
| | - Mónica Oliva
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Instituto de Biomoléculas (INBIO), Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, Cádiz 11510, Spain
| | - Rosa Llusar
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| | - Vicent S Safont
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, Castelló 12071, Spain
| |
Collapse
|
4
|
Papa V, Fessler J, Zaccaria F, Hervochon J, Dam P, Kubis C, Spannenberg A, Wei Z, Jiao H, Zuccaccia C, Macchioni A, Junge K, Beller M. Efficient Hydrogenation of N-Heterocycles Catalyzed by NNP-Manganese(I) Pincer Complexes at Ambient Temperature. Chemistry 2023; 29:e202202774. [PMID: 36193859 PMCID: PMC10100126 DOI: 10.1002/chem.202202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/06/2022]
Abstract
Manganese-catalyzed hydrogenation reactions have aroused widespread interest in recent years. Among the catalytic systems described, especially PNP- and NNP-Mn pincer catalysts have been reported for the hydrogenation of aldehydes, ketones, nitriles, aldimines and esters. Furthermore, NNP-Mn pincer compounds are efficient catalysts for the hydrogenolysis of less reactive amides, ureas, carbonates, and carbamates. Herein, the synthesis and application of specific imidazolylaminophosphine ligands and the corresponding Mn pincer complexes are described. These new catalysts have been characterized and studied by a combination of experimental and theoretical investigations, and their catalytic activities have been tested in several hydrogenation reactions with good to excellent performance. Especially, the reduction of N-heterocycles can be performed under very mild conditions.
Collapse
Affiliation(s)
- Veronica Papa
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
- Istituto italiano di tecnologiaVia Morego 3016163GenovaItaly
| | - Johannes Fessler
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Francesco Zaccaria
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Julien Hervochon
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Phong Dam
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Christoph Kubis
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
- Institute of Molecular ScienceKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceShanxi University030006TaiyuanP. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Cristiano Zuccaccia
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Alceo Macchioni
- Dipartimento di Chimica, Biologia e Biotecnologie and CIRCCUniversità degli Studi di Perugia06123PerugiaItaly
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29A18059RostockGermany
| |
Collapse
|
5
|
Wang XY, He YQ, Wang M, Zhou Y, Li N, Song XR, Zhou ZZ, Tian WF, Xiao Q. Visible-light-driven proton reduction for semi-hydrogenation of alkynes via organophotoredox/manganese dual catalysis. RSC Adv 2022; 12:36138-36141. [PMID: 36545070 PMCID: PMC9761695 DOI: 10.1039/d2ra07920h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Described here is a unprecedented organophotoredox/manganese dual catalyzed proton reduction and its application for semi-reduction of alkynes. The catalytic active pre-catalyst [Mn-1] can be feasibly be prepared on gram-scale from Mn(acac)2·2H2O in air. This dual catalytic protocol features noble-metal-free catalysts, simple ligand, and mild conditions. Besides, a unique ortho-halogen and -hydroxyl effect was observed to achieve high Z-stereoselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yong-Qin He
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Mei Wang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Yi Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Na Li
- School of Pharmaceutical Science, Nanchang UniversityNanchang330006P. R. China
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal UniversityNanchangP. R. China
| | - Wan-Fa Tian
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal UniversityNanchang330013P. R. China
| |
Collapse
|
6
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
7
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
8
|
Liang Y, Das UK, Luo J, Diskin-Posner Y, Avram L, Milstein D. Magnesium Pincer Complexes and Their Applications in Catalytic Semihydrogenation of Alkynes and Hydrogenation of Alkenes: Evidence for Metal-Ligand Cooperation. J Am Chem Soc 2022; 144:19115-19126. [PMID: 36194894 PMCID: PMC9585592 DOI: 10.1021/jacs.2c08491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of catalysts for environmentally benign organic transformations is a very active area of research. Most of the catalysts reported so far are based on transition-metal complexes. In recent years, examples of catalysis by main-group metal compounds have been reported. Herein, we report a series of magnesium pincer complexes, which were characterized by NMR and X-ray single-crystal diffraction. Reversible activation of H2 via aromatization/dearomatization metal-ligand cooperation was studied. Utilizing the obtained complexes, the unprecedented homogeneous main-group metal catalyzed semihydrogenation of alkynes and hydrogenation of alkenes were demonstrated under base-free conditions, affording Z-alkenes and alkanes as products, respectively, with excellent yields and selectivities. Control experiments and DFT studies reveal the involvement of metal-ligand cooperation in the hydrogenation reactions. This study not only provides a new approach for the semihydrogenation of alkynes and hydrogenation of alkenes catalyzed by magnesium but also offers opportunities for the hydrogenation of other compounds catalyzed by main-group metal complexes.
Collapse
Affiliation(s)
- Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uttam Kumar Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Weber S, Kirchner K. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications. Acc Chem Res 2022; 55:2740-2751. [PMID: 36074912 PMCID: PMC9494751 DOI: 10.1021/acs.accounts.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The activation of weakly polarized bonds represents a challenging, yet highly valuable process. In this context, precious metal catalysts have been used as reliable compounds for the activation of rather inert bonds for the last several decades. Nevertheless, base-metal complexes including cobalt, iron, or nickel are currently promising candidates for the substitution of noble metals in order to develop more sustainable processes. In the past few years, manganese(I)-based complexes were heavily employed as efficient catalysts for (de)hydrogenation reactions. However, the vast majority of these complexes operate via a metal-ligand bifunctionality as already well implemented for precious metals decades ago. Although high reactivity can be achieved in various reactions, this concept is often not applicable to certain transformations due to outer-sphere mechanisms. In this Account, we outline the potential of alkylated Mn(I)-carbonyl complexes for the activation of nonpolar and moderately polar E-H (E = H, B, C, Si) bonds and disclose our successful approach for the utilization of complexes in the field of homogeneous catalysis. This involves the rational design of manganese complexes for hydrogenation reactions involving ketones, nitriles, carbon dioxide, and alkynes. In addition to that, the reduction of alkenes by dihydrogen could be achieved by a series of well-defined manganese complexes which was not possible before. Furthermore, we elucidate the potential of our Mn-based catalysts in the field of hydrofunctionalization reactions for carbon-carbon multiple bonds. Our investigations unveiled novel insights into reaction pathways of dehydrogenative silylation of alkenes and trans-1,2-diboration of terminal alkynes, which was not yet reported for transition metals. Due to rational catalyst design, these transformations can be achieved under mild reaction conditions. Delightfully, all of the employed complexes are bench-stable compounds. We took advantage of the fact that Mn(I) alkyl complexes are known to undergo migratory insertion of the alkyl group into the CO ligand, yielding an unsaturated acyl intermediate. Hydrogen atom abstraction by the acyl ligand then paves the way to an active species for a variety of catalytic transformations which all proceed via an inner-sphere process. Although these textbook reactions have been well-known for decades, the application in catalytic transformations is still in its infancy. A brief historical overview of alkylated manganese(I)-carbonyl complexes is provided, covering the synthesis and especially iconic stoichiometric transformations, e.g., carbonylation, as intensively examined by Calderazzo, Moss, and others. An outline of potential future applications of defined alkyl manganese complexes will be given, which may inspire researchers for the development of novel (base-)metal catalysts.
Collapse
|
10
|
Both N, Spannenberg A, Junge K, Beller M. Low-Valent Molybdenum PNP Pincer Complexes as Catalysts for the Semihydrogenation of Alkynes. Organometallics 2022; 41:1797-1805. [PMID: 36156902 PMCID: PMC9490815 DOI: 10.1021/acs.organomet.1c00709] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-valent molybdenum PNP pincer complexes were studied as catalysts for the semihydrogenation of alkynes. For that purpose, tBu-substituted PNP complexes PNP tBuMo(CO)2 (6a) and PNP tBuMo(CO)3 (6c) and the NNP complex NNP iPrMo(CO)2(PPh3) ((rac)-7) were synthesized and characterized. By utilizing the cyclohexyl-substituted complex PNPCyMo(CO)2(CH3CN) (5a), several diphenylacetylene derivatives are transformed to the corresponding (Z)-alkenes with good to very good diastereoselectivities (up to 91:9). Mechanistic experiments indicate an outer-sphere mechanism including metal-ligand cooperativity.
Collapse
Affiliation(s)
- Niklas
F. Both
- Leibniz-Institut für
Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für
Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Kathrin Junge
- Leibniz-Institut für
Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut für
Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
12
|
Effect of Iodide on the pH-Controlled Hydrogenations of Diphenylacetylene and Cinnamaldehyde Catalyzed by Ru(II)-Sulfonated Triphenylphosphine Complexes in Aqueous–Organic Biphasic Systems. Catalysts 2022. [DOI: 10.3390/catal12050518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effect of NaI on hydrogenation of diphenylacetylene catalyzed by the water-soluble [{RuCl(mtppms-Na)2}2(µ-Cl)2] (1) (mtppms-Na = meta-monosulfonated triphenylphosphine sodium salt) is reported. Hydrogenations were performed under mild conditions (P(H2) = 1 bar, T = 50–80 ℃) in aqueous–organic biphasic reaction mixtures wherein the catalyst was dissolved in aqueous phase of various pHs. In acidic solutions, addition of NaI to 1 + mtppms-Na increased the selective conversion of diphenylacetylene to stilbenes from 10% to 90% but did not effect the high Z-selectivity (up to 98%). In contrast, in basic solutions the major product was diphenylethane (up to 70%), and the yield of E-stilbene exceeded that of the Z-isomer. 1H and 31P NMR measurements revealed that depending on the absence or presence of NaI, the catalytically active Ru(II)-hydride species in acidic solutions was [RuHCl(mtppms-Na)3], 2, or [RuHI(mtppms-Na)3], 5, respectively, while in basic solutions, both 2 and 5 were hydrogenated further to yield the same hydride species, cis,fac-[RuH2(H2O)(mtppms-Na)3]. [RuHI(mtppms-Na)3] proved superior to [RuHCl(mtppms-Na)3] as a catalyst for the selective hydrogenation of cinnamaldehyde to dihydrocinamaldehyde. This finding was explained by a facile formation of a (putative) dihydrogen complex [Ru(H2)I2(H2O)(mtppms-Na)2] intermediate, resulting in fast heterolytic activation of H2.
Collapse
|
13
|
Yang W, Kalavalapalli TY, Krieger AM, Khvorost TA, Chernyshov IY, Weber M, Uslamin EA, Pidko EA, Filonenko GA. Basic Promotors Impact Thermodynamics and Catalyst Speciation in Homogeneous Carbonyl Hydrogenation. J Am Chem Soc 2022; 144:8129-8137. [PMID: 35476423 PMCID: PMC9100671 DOI: 10.1021/jacs.2c00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Homogeneously catalyzed
reactions often make use of additives and
promotors that affect reactivity patterns and improve catalytic performance.
While the role of reaction promotors is often discussed in view of
their chemical reactivity, we demonstrate that they can be involved
in catalysis indirectly. In particular, we demonstrate that promotors
can adjust the thermodynamics of key transformations in homogeneous
hydrogenation catalysis and enable reactions that would be unfavorable
otherwise. We identified this phenomenon in a set of well-established
and new Mn pincer catalysts that suffer from persistent product inhibition
in ester hydrogenation. Although alkoxide base additives do not directly
participate in inhibitory transformations, they can affect the equilibrium
constants of these processes. Experimentally, we confirm that by varying
the base promotor concentration one can control catalyst speciation
and inflict substantial changes to the standard free energies of the
key steps in the catalytic cycle. Despite the fact that the latter
are universally assumed to be constant, we demonstrate that reaction
thermodynamics and catalyst state are subject to external control.
These results suggest that reaction promotors can be viewed as an
integral component of the reaction medium, on its own capable of improving
the catalytic performance and reshaping the seemingly rigid thermodynamic
landscape of the catalytic transformation.
Collapse
Affiliation(s)
- Wenjun Yang
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tejas Y Kalavalapalli
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Taras A Khvorost
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Ivan Yu Chernyshov
- TheoMAT Group, ChemBio Cluster, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia
| | - Manuela Weber
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstraße 34/36, Berlin D-14195, Germany
| | - Evgeny A Uslamin
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering Group, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
14
|
Wech F, Gellrich U. In Situ Formation of an Efficient Catalyst for the Semihydrogenation of Alkynes from Imidazolone and BH 3. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Felix Wech
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Urs Gellrich
- Institut für Organische Chemie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| |
Collapse
|
15
|
Zubar V, Brzozowska A, Sklyaruk J, Rueping M. Dehydrogenative and Redox-Neutral N-Heterocyclization of Aminoalcohols Catalyzed by Manganese Pincer Complexes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Viktoriia Zubar
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Aleksandra Brzozowska
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Jan Sklyaruk
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- Chemical Science Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Farrar-Tobar RA, Weber S, Csendes Z, Ammaturo A, Fleissner S, Hoffmann H, Veiros LF, Kirchner K. E-Selective Manganese-Catalyzed Semihydrogenation of Alkynes with H 2 Directly Employed or In Situ-Generated. ACS Catal 2022; 12:2253-2260. [PMID: 35211351 PMCID: PMC8859827 DOI: 10.1021/acscatal.1c06022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Selective semihydrogenation of alkynes with the Mn(I) alkyl catalyst fac-[Mn(dippe)(CO)3(CH2CH2CH3)] (dippe = 1,2-bis(di-iso-propylphosphino)ethane) as a precatalyst is described. The required hydrogen gas is either directly employed or in situ-generated upon alcoholysis of KBH4 with methanol. A series of aryl-aryl, aryl-alkyl, alkyl-alkyl, and terminal alkynes was readily hydrogenated to yield E-alkenes in good to excellent isolated yields. The reaction proceeds at 60 °C for directly employed hydrogen or at 60-90 °C with in situ-generated hydrogen and catalyst loadings of 0.5-2 mol %. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups, including halides, phenols, nitriles, unprotected amines, and heterocycles. The reaction can be upscaled to the gram scale. Mechanistic investigations, including deuterium-labeling studies and density functional theory (DFT) calculations, were undertaken to provide a reasonable reaction mechanism, showing that initially formed Z-isomer undergoes fast isomerization to afford the thermodynamically more stable E-isomer.
Collapse
Affiliation(s)
- Ronald A. Farrar-Tobar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Zita Csendes
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Antonio Ammaturo
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Sarah Fleissner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Helmuth Hoffmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, Lisboa 1049-001, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| |
Collapse
|
17
|
Abstract
AbstractRecent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.1 Introduction2 Hydrosilylation3 Hydroboration4 Hydrogenation5 Transfer Hydrogenation6 Conclusion and Perspective
Collapse
Affiliation(s)
- Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Ruhr University Bochum
| | - Peter Schlichter
- Max Planck Institute for Chemical Energy Conversion
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University
| |
Collapse
|
18
|
Torres-Calis A, García JJ. Manganese-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes with iPrOH as hydrogen source. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00246a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Mn-catalyzed transfer semihydrogenation of internal alkynes to E-alkenes is reported herein, along with Mn-catalyzed hydration of α-keto alkynes. Mechanistic studies displayed an asymmetrical Mn-hydride species performing the catalytic turnover.
Collapse
Affiliation(s)
- Antonio Torres-Calis
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Juventino J. García
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
19
|
Sharma DM, Gouda C, Gonnade RG, Punji B. Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(ii) catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature chemo- and stereoselective hydrogenation of alkynes is described using a well-defined and phosphine-free hemilabile cobalt catalyst.
Collapse
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| | - Chandrakant Gouda
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
- Centre for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411 008, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| |
Collapse
|
20
|
Huang J, Li X, Wen H, Ouyang L, Luo N, Liao J, Luo R. Substrate-Controlled Cu(OAc) 2-Catalyzed Stereoselective Semi-Reduction of Alkynes with MeOH as the Hydrogen Source. ACS OMEGA 2021; 6:11740-11749. [PMID: 34056327 PMCID: PMC8154033 DOI: 10.1021/acsomega.1c01083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
A substrate-controlled stereoselective semi-reduction of alkynes with MeOH as the hydrogen source has been developed, and readily available Cu(OAc)2 (copper acetate) is utilized as an optimal catalyst. The detailed investigation of the mechanism revealed distinct catalytic processes for the (Z)- and (E)-alkenes, respectively. As a result, a diversity of alkynes (including terminal, internal alkynes etc.) were compatible under the mild reaction conditions. Furthermore, the high proportion of deuterium in Z-alkenes (up to 96%) was obtained using d 4-methanol as a solvent.
Collapse
Affiliation(s)
- Jiuzhong Huang
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaoning Li
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases of Ministry of Education, Gannan
Medical University, Ganzhou 341000, P. R. China
| | - Huiling Wen
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Lu Ouyang
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Nianhua Luo
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jianhua Liao
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Renshi Luo
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
21
|
|
22
|
Zubar V, Dewanji A, Rueping M. Chemoselective Hydrogenation of Nitroarenes Using an Air-Stable Base-Metal Catalyst. Org Lett 2021; 23:2742-2747. [PMID: 33754743 PMCID: PMC8041384 DOI: 10.1021/acs.orglett.1c00659] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The reduction of nitroarenes to anilines
as well as azobenzenes
to hydrazobenzenes using a single base-metal catalyst is reported.
The hydrogenation reactions are performed with an air-and moisture-stable
manganese catalyst and proceed under relatively mild reaction conditions.
The transformation tolerates a broad range of functional groups, affording
aniline derivatives and hydrazobenzenes in high yields. Mechanistic
studies suggest that the reaction proceeds via a bifunctional activation
involving metal–ligand cooperative catalysis.
Collapse
Affiliation(s)
- Viktoriia Zubar
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Abhishek Dewanji
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Huang Z, Wang Y, Leng X, Huang Z. An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne cis-Semihydrogenation with Ethanol: From Elementary Steps to Catalysis. J Am Chem Soc 2021; 143:4824-4836. [DOI: 10.1021/jacs.1c01472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhidao Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yulei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
24
|
Seifert F, Drikermann D, Steinmetzer J, Zi Y, Kupfer S, Vilotijevic I. Z-Selective phosphine promoted 1,4-reduction of ynoates and propynoic amides in the presence of water. Org Biomol Chem 2021; 19:6092-6097. [PMID: 34152338 DOI: 10.1039/d1ob00909e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphine-mediated reductions of substituted propynoic esters and amides in the presence of water yield the partially reduced α,β-unsaturated esters and amides with high Z-selectivity. The competitive in situ Z to E-isomerization of the product in some cases lowers the Z to E ratios of the isolated α,β-unsaturated carbonyl products. Reaction time and the amounts of phosphine and water in the reaction mixture are the key experimental factors which control the selectivity by preventing or reducing the rates of Z- to E-product isomerization. Close reaction monitoring enables isolation of the Z-alkenes with high selectivities. The computational results suggest that the reactions could be highly Z-selective owing to the stereoselective formation of the E-P-hydroxyphosphorane intermediate.
Collapse
Affiliation(s)
- Fabian Seifert
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Denis Drikermann
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Johannes Steinmetzer
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| | - Stephan Kupfer
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany.
| |
Collapse
|