1
|
Zhao YY, Zhang X, Xu Y, Chen Z, Hwang B, Kim H, Liu H, Li X, Yoon J. A Renal Clearable Nano-Assembly with Förster Resonance Energy Transfer Amplified Superoxide Radical and Heat Generation to Overcome Hypoxia Resistance in Phototherapeutics. Angew Chem Int Ed Engl 2024; 63:e202411514. [PMID: 38940633 DOI: 10.1002/anie.202411514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/29/2024]
Abstract
Given that type I photosensitizers (PSs) possess a good hypoxic tolerance, developing an innovative tactic to construct type I PSs is crucially important, but remains a challenge. Herein, we present a smart molecular design strategy based on the Förster resonance energy transfer (FRET) mechanism to develop a type I photodynamic therapy (PDT) agent with an encouraging amplification effect for accurate hypoxic tumor therapy. Of note, benefiting from the FRET effect, the obtained nanostructured type I PDT agent (NanoPcSZ) with boosted light-harvesting ability not only amplifies superoxide radical (O2 •-) production but also promotes heat generation upon near-infrared light irradiation. These features facilitate NanoPcSZ to realize excellent phototherapeutic response under both normal and hypoxic environments. As a result, both in vitro and in vivo experiments achieved a remarkable improvement in therapeutic efficacy via the combined effect of photothermal action and type I photoreaction. Notably, NanoPcSZ can be eliminated from organs (including the liver, lung, spleen, and kidney) apart from the tumor site and excreted through urine within 24 h of its systemic administration. In this way, the potential biotoxicity of drug accumulation can be avoided and the biosafety can be further enhanced.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Xiaojun Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Yihui Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Bokyeong Hwang
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Hao Liu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fuzhou, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| |
Collapse
|
2
|
Shao C, Tang B, Chu JCH, Lau KM, Wong WT, Che CM, Tai WCS, Wong WT, Wong CTT. Macrophage-engaging peptidic bispecific antibodies (pBsAbs) for immunotherapy via a facile bioconjugation strategy. Chem Sci 2024; 15:11272-11278. [PMID: 39055004 PMCID: PMC11268508 DOI: 10.1039/d4sc00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024] Open
Abstract
Bispecific antibodies are artificial molecules that fuse two different antigen-binding sites of monoclonal antibodies into one single entity. They have emerged as a promising next-generation anticancer treatment. Despite the fascinating applications of bispecific antibodies, the design and production of bispecific antibodies remain tedious and challenging, leading to a long R&D process and high production costs. We herein report an unprecedented strategy to cyclise and conjugate tumour-targeting peptides on the surface of a monoclonal antibody to form a novel type of bispecific antibody, namely the peptidic bispecific antibody (pBsAb). Such design combines the merits of highly specific monoclonal antibodies and serum-stable cyclic peptides that endows an additional tumour-targeting ability to the monoclonal antibody for binding with two different antigens. Our results show that the novel pBsAb, which comprises EGFR-binding cyclic peptides and an anti-SIRP-α monoclonal antibody, could serve as a macrophage-engaging bispecific antibody to initiate enhanced macrophage-cancer cell interaction and block the "don't eat me" signal between CD47-SIRP-α, as well as promoting antibody-dependent cellular phagocytosis and 3D cell spheroid infiltration. These findings give rise to a new type of bispecific antibody and a new platform for the rapid generation of new bispecific antibodies for research and potential therapeutic uses.
Collapse
Affiliation(s)
- Chihao Shao
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Bo Tang
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Jacky C H Chu
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
| | - Kwai Man Lau
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wai-Ting Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Chi-Ming Che
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park New Territories Hong Kong China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - William C S Tai
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University Kowloon Hong Kong China
| |
Collapse
|
3
|
Sydenham JD, Seki H, Krajcovicova S, Zeng L, Schober T, Deingruber T, Spring DR. Site-selective peptide functionalisation mediated via vinyl-triazine linchpins. Chem Commun (Camb) 2024; 60:706-709. [PMID: 38108130 DOI: 10.1039/d3cc05213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Herein we introduce 3-vinyl-1,2,4-triazines derivatives as dual-reactive linkers that exhibit selectivity towards cysteine and specific strained alkynes, enabling conjugate addition and inverse electron-demand Diels-Alder (IEDDA) reactions. This approach facilitates site-selective bioconjugation of biologically relevant peptides, followed by rapid and highly selective reactions with bicyclononyne (BCN) reagents.
Collapse
Affiliation(s)
- Jack D Sydenham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Hikaru Seki
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Sona Krajcovicova
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
- Department of Organic Chemistry, Palacky University in Olomouc, Tr. 17. Listopadu 12, Olomouc, Czech Republic
| | - Linwei Zeng
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Tim Schober
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - Tomas Deingruber
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| |
Collapse
|
4
|
A Sulfur-Bridging Sulfonate-Modified Zinc(II) Phthalocyanine Nanoliposome Possessing Hybrid Type I and Type II Photoreactions with Efficient Photodynamic Anticancer Effects. Molecules 2023; 28:molecules28052250. [PMID: 36903498 PMCID: PMC10005636 DOI: 10.3390/molecules28052250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Phthalocyanines are potentially promising photosensitizers (PSs) for photodynamic therapy (PDT), but the inherent defects such as aggregation-caused quenching effects and non-specific toxicity severely hinder their further application in PDT. Herein, we synthesized two zinc(II) phthalocyanines (PcSA and PcOA) monosubstituted with a sulphonate group in the alpha position with "O bridge" and "S bridge" as bonds and prepared a liposomal nanophotosensitizer (PcSA@Lip) by thin-film hydration method to regulate the aggregation of PcSA in the aqueous solution and enhance its tumor targeting ability. PcSA@Lip exhibited highly efficient production of superoxide radical (O2∙-) and singlet oxygen (1O2) in water under light irradiation, which were 2.6-fold and 15.4-fold higher than those of free PcSA, respectively. Furthermore, PcSA@Lip was able to accumulate selectively in tumors after intravenous injection with the fluorescence intensity ratio of tumors to livers was 4.1:1. The significant tumor inhibition effects resulted in a 98% tumor inhibition rate after PcSA@Lip was injected intravenously at an ultra-low PcSA@Lip dose (0.8 nmol g-1 PcSA) and light dose (30 J cm-2). Therefore, the liposomal PcSA@Lip is a prospective nanophotosensitizer possessing hybrid type I and type II photoreactions with efficient photodynamic anticancer effects.
Collapse
|
5
|
Xiong J, Chu JCH, Fong WP, Wong CTT, Ng DKP. Specific Activation of Photosensitizer with Extrinsic Enzyme for Precisive Photodynamic Therapy. J Am Chem Soc 2022; 144:10647-10658. [PMID: 35639988 DOI: 10.1021/jacs.2c04017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Delivery of functional proteins into the intracellular space has been a challenging task that could lead to a myriad of therapeutic applications. We report herein a novel bioconjugation strategy for enzyme modification and selective delivery into cancer cells for lock-and-key-type activation of photosensitizers. Using a bifunctional linker containing a bis(bromomethyl)phenyl group and an o-phthalaldehyde moiety, it could induce cyclization of the peptide sequence Ac-NH-CRGDfC-CONH2 through site-specific dibenzylation with the two cysteine residues and further coupling with β-galactosidase via the phthalaldehyde-amine capture reaction. This facile two-step one-pot procedure enabled the preparation of cyclic RGD-modified β-galactosidase readily, which could be internalized selectively into αvβ3 integrin-overexpressed cancer cells. Upon encountering an intrinsically quenched distyryl boron dipyrromethene-based photosensitizer conjugated with a galactose moiety through a self-immolative linker inside the cells, the extrinsic enzyme induced specific cleavage of the β-galactosidic bond followed by self-immolation to release an activated derivative, thereby restoring the photodynamic activities and causing cell death effectively. The high specificity of this extrinsic enzyme-activated photosensitizing system was also demonstrated in vivo using nude mice bearing an αvβ3 integrin-positive U87-MG tumor. The specific activation at the tumor site resulted in lighting up and complete eradication of the tumor upon laser irradiation, while by using the native β-galactosidase, the effects were largely reduced. In contrast to the conventional activation using intrinsic enzymes, this extrinsic enzyme activatable approach can further minimize the nonspecific activation toward precisive photodynamic therapy.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
6
|
Chu JCH, Shao C, Ha SYY, Fong WP, Wong CTT, Ng DKP. One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy. Biomater Sci 2021; 9:7832-7837. [PMID: 34726672 DOI: 10.1039/d1bm01306h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein a one-pot approach to cyclise a tumour-targeting peptide and conjugate it on the surface of red blood cells loaded with a boron dipyrromethene-based photosensitiser using a bifunctional linker consisting of a bis(bromomethyl)phenyl unit and an ortho-phthalaldehyde unit. This cell-based photosensitiser with surface modification with cyclic RGD peptide moieties can selectively bind against the αvβ3 integrin-overexpressed cancer cells, leading to enhanced photocytotoxicity. The results demonstrate that this facile strategy is effective for live-cell surface modification for a wide range of applications.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Chihao Shao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Summer Y Y Ha
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
7
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 723] [Impact Index Per Article: 180.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Cong F, Jiang H, Du X, Zhang S, Yang W. Facile, Mild-Temperature Synthesis of Metal-Free Phthalocyanines. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1499-8865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractIt is important for the synthesis and research of phthalocyanine compounds for these compounds to be easily obtained at low temperature. We observed that metal-free phthalocyanine was sometimes found in a simple system used to synthesize phthalocyanine precursors at room temperature, and further studies showed that the key to the effective formation of phthalocyanines at low temperature lay in the presence of equal volumes of alcohol and amine, in addition to substrate phthalonitriles and solvents, in the reaction system. A synthetic mechanism was proposed and facile syntheses have been realized, such as the synthesis of tetra-α(β)-nitrophthalocyanines and tetra-α(β)-(4-tert-butylphenoxy)phthalocyanines from the corresponding substituted phthalonitriles at mild temperature (37 °C). The results are significant for the design and synthesis of new phthalocyanine derivatives, and the method is convenient and easy to adopt for general use in standard laboratories.
Collapse
Affiliation(s)
- Fangdi Cong
- Faculty of Chemistry, Northeast Normal University
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Basic Science, Tianjin Agricultural University
| | - Hongzhen Jiang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Basic Science, Tianjin Agricultural University
| | - Xiguang Du
- Faculty of Chemistry, Northeast Normal University
| | - Shulin Zhang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Basic Science, Tianjin Agricultural University
| | - Wei Yang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Basic Science, Tianjin Agricultural University
| |
Collapse
|