1
|
Zarei S, Motard M, Cecioni S. Stable Amide Activation of N-Acetylated Glycosamines for the Synthesis of Fused Polycyclic Glycomimetics. Org Lett 2024; 26:204-209. [PMID: 38166160 DOI: 10.1021/acs.orglett.3c03803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
N-Acetylation of carbohydrates is an underexplored target for chemoselective derivatization and generation of glycomimetic scaffolds. Through mild amide activation, we report that N-acetimidoyl heterocycles are stable in neutral or basic conditions yet are excellent leaving groups through acid catalysis. While this specific reactivity could prove broadly useful in amide activation strategies, stably activated N-acetylated sugars can also be diversified using libraries of hydrazides. We optimized an acid-catalyzed one-pot sequence that includes nucleophilic displacement, cyclodehydration, and intramolecular glycosylation to ultimately deliver pyranosides fused to morpholines or piperazines. This strategy of stable activation followed by acid-triggered reaction sequences exemplifies the efficient assembly of 3D-rich fused glycomimetic libraries.
Collapse
Affiliation(s)
- Samaneh Zarei
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Mélina Motard
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| | - Samy Cecioni
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Station Downtown, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
2
|
Huang J, Li JQ, Cui XY, Qin YH, Ma SJ, An ZA, Sun WW, Wu B. A Method for the Synthesis of Thioindoles through Copper-Catalyzed C-S Bond Coupling Reaction. J Org Chem 2024; 89:245-256. [PMID: 38090760 DOI: 10.1021/acs.joc.3c02008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We herein report the copper-catalyzed C-S bond coupling reaction of indoles with N-thiosuccinimides, resulting in moderate to excellent yields of mono- and bis-sulfenylated compounds such as arylthioindoles, alkylthioindoles, selenylated indoles, and cysteine-substituted indoles. Thioarylation and thioglycosylation at the C2 position of indole alkaloids in the Radix Isatidis were achieved via structural modification. The first total syntheses of isatindigotindolosides III and IV have been successfully carried out. The electrophilic sulfenyl bromides generated in situ can play an important role in the catalytic cycle.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmaceutical Sciences & School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Jin-Quan Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Xin-Yue Cui
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Yi-Han Qin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Shi-Jie Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Zi-An An
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Wu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission & School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
3
|
Feng M, Fernandes AJ, Sirvent A, Spinozzi E, Shaaban S, Maulide N. Transfer freier Aminogruppen via α-Aminierung von Carbonylen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304990. [PMID: 38516250 PMCID: PMC10952326 DOI: 10.1002/ange.202304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 03/23/2024]
Abstract
AbstractEine Strategie zur direkten α‐Aminierung unfunktionalisierter Carbonylverbindungen wird berichtet. Unter Verwendung einer kommerziell verfügbaren Stickstoffquelle zur Übertragung der freien Aminogruppe (NH2) werden primäre α‐Aminocarbonylverbindungen unter besonders milden Bedingungen hergestellt. Die direkte Einführung einer ungeschützten, primären Aminogruppe ermöglicht in der Folge zahlreiche in situ Funktionalisierungen der erhaltenen Reaktionsprodukte, einschließlich Peptidkupplungen und Pictet–Spengler Cyclisierungen.
Collapse
Affiliation(s)
- Minghao Feng
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Anthony J. Fernandes
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| | - Ana Sirvent
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| | - Eleonora Spinozzi
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Saad Shaaban
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| |
Collapse
|
4
|
Feng M, Fernandes AJ, Sirvent A, Spinozzi E, Shaaban S, Maulide N. Free Amino Group Transfer via α-Amination of Native Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202304990. [PMID: 37114555 PMCID: PMC10952782 DOI: 10.1002/anie.202304990] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 04/29/2023]
Abstract
We report herein a straightforward transfer of a free amino group (NH2 ) from a commercially available nitrogen source to unfunctionalized, native carbonyls (amides and ketones) resulting in direct α-amination. Primary α-amino carbonyls are readily produced under mild conditions, further enabling diverse in situ functionalization reactions-including peptide coupling and Pictet-Spengler cyclization-that capitalize on the presence of the unprotected primary amine.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Anthony J. Fernandes
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Eleonora Spinozzi
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Saad Shaaban
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
5
|
Huang J, Sun WW, Li JQ, Ma AD, Liu JK, Wu B. Copper-Catalyzed C2- or C3-Thioglycosylation of Indoles with N-(Thioglycosides)succinimides: An Effective Strategy for the Total Synthesis of Isatindigotindolosides. Org Lett 2023; 25:528-532. [PMID: 36646633 DOI: 10.1021/acs.orglett.2c04270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Isatindigotindolosides, indoles containing a 1-S-β-glucopyranosyl unit at position C2, show promising bioactivity. Here, we report a copper-catalyzed C2- or C3-thioglycosylation of indoles with N-(thioglycosides)succinimides to construct indole alkaloid glucosides. This reaction is widely tolerant of functional groups, as various indoles and thioglycosides are suitable. It also provides a reliable method for performing late-stage modifications of natural products, such as gramine and melatonin. Total syntheses of isatindigotindolosides I and II were successfully accomplished using the C2-thioglycosylation reaction as a key step.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Wen-Wu Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jin-Quan Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ao-Di Ma
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.,Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
6
|
Kobayashi A, Matsuzawa T, Hosoya T, Yoshida S. Synthesis of benzo[ b]furans from alkynyl sulfoxides and phenols by the interrupted Pummerer reaction. RSC Adv 2023; 13:839-843. [PMID: 36686947 PMCID: PMC9809539 DOI: 10.1039/d2ra07856b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
The interrupted Pummerer reaction of alkynyl sulfoxides with phenols is disclosed. A wide range of benzo[b]furans were efficiently synthesized through unexplored electrophilic activation of the electron-deficient alkynyl sulfinyl group. Based on the good availability of alkynyl sulfoxides, we successfully prepared various functionalized benzo[b]furans from readily available alkynes, thiosulfonates, and phenols.
Collapse
Affiliation(s)
- Akihiro Kobayashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science6-3-1 NiijukuKatsushika-kuTokyo 125-8585Japan,Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)2-3-10 Kanda-SurugadaiChiyoda-kuTokyo 101-0062Japan
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)2-3-10 Kanda-SurugadaiChiyoda-kuTokyo 101-0062Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU)2-3-10 Kanda-SurugadaiChiyoda-kuTokyo 101-0062Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science6-3-1 NiijukuKatsushika-kuTokyo 125-8585Japan
| |
Collapse
|
7
|
Feng M, Zhang H, Maulide N. Challenges and Breakthroughs in Selective Amide Activation. Angew Chem Int Ed Engl 2022; 61:e202212213. [PMID: 36124856 PMCID: PMC10092240 DOI: 10.1002/anie.202212213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
In contrast to ketones and carboxylic esters, amides are classically seen as comparatively unreactive members of the carbonyl family, owing to their unique structural and electronic features. However, recent decades have seen the emergence of research programmes focused on the selective activation of amides under mild conditions. In the past four years, this area has continued to rapidly develop, with new advances coming in at a fast pace. Several novel activation strategies have been demonstrated as effective tools for selective amide activation, enabling transformations that are at once synthetically useful and mechanistically intriguing. This Minireview comprises recent advances in the field, highlighting new trends and breakthroughs in what could be called a new age of amide activation.
Collapse
Affiliation(s)
- Minghao Feng
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
8
|
Feng M, Zhang H, Maulide N. Challenges and Breakthroughs in Selective Amide Activation. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212213. [PMID: 38504998 PMCID: PMC10947092 DOI: 10.1002/ange.202212213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 11/09/2022]
Abstract
In contrast to ketones and carboxylic esters, amides are classically seen as comparatively unreactive members of the carbonyl family, owing to their unique structural and electronic features. However, recent decades have seen the emergence of research programmes focused on the selective activation of amides under mild conditions. In the past four years, this area has continued to rapidly develop, with new advances coming in at a fast pace. Several novel activation strategies have been demonstrated as effective tools for selective amide activation, enabling transformations that are at once synthetically useful and mechanistically intriguing. This Minireview comprises recent advances in the field, highlighting new trends and breakthroughs in what could be called a new age of amide activation.
Collapse
Affiliation(s)
- Minghao Feng
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Haoqi Zhang
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Nuno Maulide
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
9
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov OV. Decarboxylative Sulfinylation Enables a Direct, Metal-Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022; 61:e202210525. [PMID: 36006859 PMCID: PMC9588746 DOI: 10.1002/anie.202210525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 12/14/2022]
Abstract
The intermediate oxidation state of sulfoxides is central to the plethora of their applications in chemistry and medicine, yet it presents challenges for an efficient synthetic access, limiting the structural diversity of currently available sulfoxides. Here, we report a data-guided development of direct decarboxylative sulfinylation that enables the previously inaccessible functional group interconversion of carboxylic acids to sulfoxides in a reaction with sulfinates. Given the broad availability of carboxylic acids and the growing synthetic potential of sulfinates, the direct decarboxylative sulfinylation is poised to improve the structural diversity of synthetically accessible sulfoxides. The reaction is facilitated by a kinetically favored sulfoxide formation from the intermediate sulfinyl sulfones, despite the strong thermodynamic preference for the sulfone formation, unveiling the previously unknown and chemoselective radicalophilic sulfinyl sulfone reactivity.
Collapse
Affiliation(s)
- Viet D Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Graham C Haug
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Samuel G Greco
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Ramon Trevino
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Guna B Karki
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
10
|
Xia XF, Huang Q, Sun TY, Jiang Y, Ran G. Catalytic Desaturation and β-Fluorination of Aliphatic Amides Enabled by an Oxidative-Promoted Bond Destabilization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu214122, China
| | - Quan Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu214122, China
| | - Tian-Yu Sun
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen518132, China
| | - Yuqin Jiang
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang453007, China
| | - Guoxia Ran
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu214122, China
| |
Collapse
|
11
|
Nguyen VD, Haug GC, Greco SG, Trevino R, Karki GB, Arman HD, Larionov O. Decarboxylative Sulfinylation Enables a Direct, Metal‐Free Access to Sulfoxides from Carboxylic Acids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viet D. Nguyen
- The University of Texas at San Antonio Department of Chemistry 78249 San Antonio UNITED STATES
| | - Graham C. Haug
- The University of Texas at San Antonio Deoartment of Chemistry 1 utsa circle 78249 SAN ANTONIO UNITED STATES
| | - Samuel G. Greco
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Ramon Trevino
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Guna B. Karki
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Hadi D. Arman
- The University of Texas at San Antonio Department of Chemistry UNITED STATES
| | - Oleg Larionov
- University of Texas at San Antonio Department of Chemistry One UTSA Circle 78249 San Antonio UNITED STATES
| |
Collapse
|
12
|
Wu DP, Ou W, Huang PQ. Ir-Catalyzed Chemoselective Reductive Condensation Reactions of Tertiary Amides with Active Methylene Compounds. Org Lett 2022; 24:5366-5371. [PMID: 35849542 DOI: 10.1021/acs.orglett.2c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic reductive condensation reactions of tertiary amides with active methylene compounds leading to multifunctionalized non-N-containing products is described. The reactions proceed through sequential iridium-catalyzed hydrosilylation of the amides followed by acid-mediated condensation with the active methylene compounds. This scalable method is broad in scope and shows remarkable chemoselectivity for the amide group in the presence of several sensitive or even more reactive functionalities such as ester, cyano, nitro, silyl dienol ether, and ketone.
Collapse
Affiliation(s)
- Dong-Ping Wu
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Wei Ou
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
13
|
Kumar J, Singh AK, Gupta A, Bhadra S. Enhancing the Extent of Enolization for α-C-H Bonds of Aliphatic Carboxylic Acid Equivalents via Ion Pair Catalysis: Application toward α-Chalcogenation. J Org Chem 2022; 87:6330-6335. [PMID: 35412824 DOI: 10.1021/acs.joc.1c02935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In general, the α-functionalization of carboxylic acid derivatives requires either a transition metal catalyst or a stoichiometric activating agent/strong base/external additive. A transition metal free α-chalcogenation of aliphatic carboxylic acid equivalents is reported herein via ion pair formation using K3PO4 as a catalyst. Mild conditions, broad scope, scalability of the process, attaining bioactive glucokinase activators, and some synthetic intermediates establish merits of the strategy.
Collapse
Affiliation(s)
- Jogendra Kumar
- Inorganic Materials and Catalysis Division, CSIR─Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anupam Kumar Singh
- Inorganic Materials and Catalysis Division, CSIR─Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniket Gupta
- Inorganic Materials and Catalysis Division, CSIR─Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR─Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002 Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
He Q, Ye JL, Xu FF, Geng H, Chen TT, Chen H, Huang PQ. Tf 2O/TTBP (2,4,6-Tri- tert-butylpyrimidine): An Alternative Amide Activation System for the Direct Transformations of Both Tertiary and Secondary Amides. J Org Chem 2021; 86:16300-16314. [PMID: 34499513 DOI: 10.1021/acs.joc.1c01572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ten types of Tf2O/TTBP-mediated amide transformation reactions were investigated. The results showed that compared with pyridine derivatives 2,6-di-tert-butyl-4-methylpyridine (DTBMP) and 2-fluoropyridine (2-F-Pyr.), TTBP can serve as an alternative amide activation system for the direct transformation of both secondary and tertiary amides. For most surveyed examples, higher or comparable yields were generally obtained. In addition, Tf2O/TTBP combination was used to promote the condensation reactions of 2-(tert-butyldimethylsilyloxy)furan (TBSOF) with both tertiary and secondary amides, the one-pot reductive Bischler-Napieralski-type reaction of tertiary lactams, and Movassaghi and Hill's modern version of the Bischler-Napieralski reaction. The value of the Tf2O/TTBP-based methodology was further demonstrated by the concise and high-yielding syntheses of several natural products.
Collapse
Affiliation(s)
- Qian He
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Jian-Liang Ye
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Fang-Fang Xu
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hui Geng
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Ting-Ting Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hang Chen
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
15
|
Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by P III/P V-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021; 143:14487-14494. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An organophosphorus (PIII/PV redox) catalyzed method for the three-component condensation of amines, carboxylic acids, and pyridine N-oxides to generate 2-amidopyridines via serial dehydration is reported. Whereas amide synthesis and functionalization usually occur under divergent reaction conditions, here a phosphetane catalyst (together with a mild bromenium oxidant and terminal hydrosilane reductant) is shown to drive both steps chemoselectively in an auto-tandem catalytic cascade. The ability to both prepare and functionalize amides under the action of a single organocatalytic reactive intermediate enables new possibilities for the efficient and modular preparation of medicinal targets.
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Heindl S, Riomet M, Matyasovsky J, Lemmerer M, Malzer N, Maulide N. Chemoselektive γ-Oxidation von β,γ-ungesättigten Amiden mit TEMPO. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:19271-19275. [PMID: 38505148 PMCID: PMC10946935 DOI: 10.1002/ange.202104023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/02/2021] [Indexed: 02/05/2023]
Abstract
AbstractEin chemoselektives und robustes Protokoll zur γ‐Oxidation von β,γ‐ungesättigten Amiden wird dargelegt. Bei dieser Methode ermöglicht elektrophile Amidaktivierung eine bei ungesättigten Amiden bisher selten angewendete regioselektive Reaktion mit TEMPO, die zu γ‐aminoxylierten α,β‐ungesättigten Amiden führt. Radikalische Zyklisierungen und Oxidationen der synthetisierten Produkte untermauern die Nützlichkeit der hergestellten Verbindungen.
Collapse
Affiliation(s)
- Sebastian Heindl
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Margaux Riomet
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Ján Matyasovsky
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Miran Lemmerer
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nicolas Malzer
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| |
Collapse
|
17
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
18
|
Tian S, Wang C, Xia J, Wan J, Liu Y. Transition Metal‐Free, Free‐Radical Sulfenylation of the α‐C(
sp
3
)−H Bond in Arylacetamides and Its Application Toward 2‐Thiomethyl Benzoxazoles Synthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shanghui Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jianhui Xia
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang People's Republic of China
| |
Collapse
|
19
|
Spieß P, Berger M, Kaiser D, Maulide N. Direct Synthesis of Enamides via Electrophilic Activation of Amides. J Am Chem Soc 2021; 143:10524-10529. [PMID: 34232035 PMCID: PMC8299460 DOI: 10.1021/jacs.1c04363] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 01/02/2023]
Abstract
A novel, one-step N-dehydrogenation of amides to enamides is reported. This reaction employs the unlikely combination of LiHMDS and triflic anhydride, which serves as both the electrophilic activator and the oxidant, and is characterized by its simple setup and broad substrate scope. The synthetic utility of the formed enamides was readily demonstrated in a range of downstream transformations.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Martin Berger
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
20
|
Heindl S, Riomet M, Matyasovsky J, Lemmerer M, Malzer N, Maulide N. Chemoselective γ-Oxidation of β,γ-Unsaturated Amides with TEMPO. Angew Chem Int Ed Engl 2021; 60:19123-19127. [PMID: 34146371 PMCID: PMC8456850 DOI: 10.1002/anie.202104023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/02/2021] [Indexed: 12/23/2022]
Abstract
A chemoselective and robust protocol for the γ‐oxidation of β,γ‐unsaturated amides is reported. In this method, electrophilic amide activation, in a rare application to unsaturated amides, enables a regioselective reaction with TEMPO resulting in the title products. Radical cyclisation reactions and oxidation of the synthesised products highlight the synthetic utility of the products obtained.
Collapse
Affiliation(s)
- Sebastian Heindl
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Margaux Riomet
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Ján Matyasovsky
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Miran Lemmerer
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Nicolas Malzer
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|