1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Jin S, Wang L, Jia Y, Ma W, Wang D. Nickel-Catalyzed Three-Component 1,2-Carboacylation of Alkenes. Molecules 2024; 29:4295. [PMID: 39339290 PMCID: PMC11433782 DOI: 10.3390/molecules29184295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Ketones, prevalent in many biologically significant molecules, require the development of novel methods to synthesize these structures, which is a critical endeavor in organic synthesis. Transition metal catalysis has proven to be an effective method for synthesizing ketones. However, the scope of these substrates remains relatively limited, particularly due to their incompatibility with sensitive functional groups. Herein, we report a Ni-catalyzed three-component 1,2-carboacylation of alkenes, which activates secondary/tertiary alkyl bromides. This method offers significant advantages: simplicity of operation, ready availability of substrates, and broad substrate applicability. A series of experimental studies have helped clarify the key mechanistic pathways involved in this cascade reaction.
Collapse
Affiliation(s)
- Shengzhou Jin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yinggang Jia
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Wenbo Ma
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, National Base for International Science and Technology Cooperation of Chengdu University, Chengdu University, Chengdu 610106, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
3
|
Xiao J, Jia T, Chen S, Pan M, Li X. Ni-catalyzed enantioselective three-component reductive alkylacylation of alkenes: modular access to structurally complex α-amino ketones. Chem Sci 2024; 15:d4sc04561k. [PMID: 39246338 PMCID: PMC11376100 DOI: 10.1039/d4sc04561k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Chiral alpha-amino ketones have found extensive applications as functional molecules. A nickel-catalyzed, enantioselective, and fully intermolecular three-component 1,2-alkylacylation of N-acyl enamides has been realized with tertiary alkyl bromides and carboxylic acid-derived electrophiles as the coupling reagents. This reductive coupling strategy is operationally simple, exhibiting broad substrate scope and excellent functional group tolerance using readily available starting materials and allowing rapid access to structurally complex α-amino ketone derivatives in high enantioselectivity. A suitable chiral biimidazoline ligand together with additional chelation of the amide carbonyl group in a Ni alkyl intermediate facilitates the enantioselective control by suppressing the background reaction, accounting for the excellent enantioselectivity. Mechanistic studies indicated intermediacy of radical species.
Collapse
Affiliation(s)
- Jichao Xiao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shanxi 710062 China
| | - Tingting Jia
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shanxi 710062 China
| | - Shuang Chen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shanxi 710062 China
| | - Mengxiao Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shanxi 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an Shanxi 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao Shandong 266237 China
| |
Collapse
|
4
|
Zhang S, Zhao X, Qin G. Ru-Mg promoted reductive cross-coupling of allyl bromides and alkenes to synthesize 1,7-octadienes with an all-carbon quaternary center. Org Biomol Chem 2024; 22:3376-3380. [PMID: 38568099 DOI: 10.1039/d4ob00116h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A Ru-promoted reductive cross-coupling of allyl bromides and electron-deficient alkenes to provide terminal 1,7-octadienes with magnesium as a reductant is reported herein. This approach enables the facile construction of a series of complex terminal 1,7-octadienes with an all-carbon quaternary center under mild reaction conditions, and the synthetic utility of the current method has been demonstrated by a gram scale synthesis. Preliminary mechanism investigations suggested that a radical pathway might not be involved in this transformation.
Collapse
Affiliation(s)
- Shurong Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Xinjie Zhao
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Guiping Qin
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
5
|
Fan P, Chen Z, Wang C. Nickel/Photo-Cocatalyzed Three-Component Alkyl-Acylation of Aryl-Activated Alkenes. Org Lett 2023. [PMID: 38048426 DOI: 10.1021/acs.orglett.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Herein, we disclose a nickel/photo-cocatalyzed three-component alkyl-acylation of aryl-substituted alkenes with aldehydes and electron-withdrawing-group-activated alkyl bromides, providing straightforward access to various ketones under mild and ligand-free conditions. The photocatalyst TBADT plays a dual role in activating the acyl C-H bond of aldehydes via hydrogen atom transfer and reducing the C-Br bond of alkyl bromides via single-electron transfer. While the terminal C-C bond is forged through polarity-matched radical-type addition, nickel is likely involved in the acylation step.
Collapse
Affiliation(s)
- Pei Fan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
| | - Zhe Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
6
|
Li HC, Zhao KY, Tan Y, Wang HS, Wang WS, Chen XL, Yu B. Visible-Light-Promoted Intermolecular β-Acyl Difunctionalization of Alkenes via Oxidative Radical-Polar Crossover. Org Lett 2023; 25:8067-8071. [PMID: 37939226 DOI: 10.1021/acs.orglett.3c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A visible-light-induced β-acyl difunctionalization of alkenes with acyl oxime esters and various nucleophiles was developed to achieve molecular complexity from readily available raw materials via oxidative radical-polar crossover. A variety of nucleophiles, including NH-sulfoximines, indoles, indazole, and trimethoxybenzene, were all effectively applicable to the sustainable reaction system. The novel synthetic strategy features mild reaction conditions, a broad substrate scope (39 examples), easy scale-up, and excellent regioselectivity.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ke-Yuan Zhao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Tan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Hao-Sen Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wen-Shan Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Li J, Cao C, Wu H, Dong K. Nickel/Titanocene-Catalyzed Electrophilic Acylation Coupling of Styrene Oxides. Org Lett 2023; 25:6959-6963. [PMID: 37726896 DOI: 10.1021/acs.orglett.3c02402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The cross-coupling of epoxides with acyl chlorides or anhydrides by a nickel/titanocene dual catalytic system is established. A variety of synthetically useful β-hydroxy ketones were obtained in good to high yields by using modified pyridine-oxazoline ligand. The reaction proceeds via the cooperation of titanocene-catalyzed ring-opening of epoxides and nickel-catalyzed acylation of the benzylic radical intermediate.
Collapse
Affiliation(s)
- Jincan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chang Cao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
8
|
Wang ZK, Wang YP, Rao ZW, Liu CY, Pan XH, Guo L. General Method for Selective Three-Component Carboacylation of Alkenes via Visible-Light Dual Photoredox/Nickel Catalysis. Org Lett 2023; 25:1673-1677. [PMID: 36880593 DOI: 10.1021/acs.orglett.3c00307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
A photoredox/nickel dual catalytic protocol for the regioselective three-component carboacylation of alkenes with tertiary and secondary alkyltrifluoroborates as well as acyl chlorides is described. This redox-neutral protocol can be applied to the rapid synthesis of ketones with high diversity and complexity via a radical relay process. Many functional groups, allowing for various commercially available acyl chlorides, alkyltrifluoroborates, and alkenes, are tolerated under these mild conditions.
Collapse
Affiliation(s)
- Zi-Kai Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Ya-Ping Wang
- Shanghai BIOS Technology Co., Ltd., 659 Maoyuan Road, Fengxian District, Shanghai 201418, China
| | - Zhi-Wu Rao
- Shanghai BIOS Technology Co., Ltd., 659 Maoyuan Road, Fengxian District, Shanghai 201418, China
| | - Chun-Yu Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xian-Hua Pan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Lei Guo
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
9
|
Cheng YY, Hou HY, Liu Y, Yu JX, Chen B, Tung CH, Wu LZ. α-Acylation of Alkenes by a Single Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202208831. [PMID: 36202761 DOI: 10.1002/anie.202208831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/05/2022]
Abstract
A direct strategy for the difunctionalization of alkenes, with acylation occurring at the more substituted alkene position, would be attractive for complex ketone synthesis. We report herein a reaction driven by a single photocatalyst that enables α-acylation in this way with the introduction of a fluoromethyl, alkyl, sulfonyl or thioether group at the β-position of the alkene with high chemo- and regioselectivity under extremely mild conditions. Crucial to the success of this method are rate differences in the kinetics of radical generation through single-electron transfer (SET) between different radical precursors and the excited photocatalyst (PC*). Thus, the β-position of the alkene is first occupied by the group derived from the radical precursor that can be generated most readily, and α-keto acids could be used as an electrophilic reagent for the α-acylation of alkenes.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Moore AS, Stanley LM. Nickel-Catalyzed Formation of α-Substituted γ-Amino Ketones via Alkene Carboacylation. Org Lett 2022; 24:8959-8963. [DOI: 10.1021/acs.orglett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Austin S. Moore
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M. Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
11
|
Chen G, Zhou R, Zhang X, Xiao X, Kramer S, Cheng GJ, Lian Z. Carbonylative Cross-Electrophile Coupling between Aryl Bromides and Aryl Triflates Enabled by Palladium and Rhodium Cooperative Catalysis and CO as Reductant. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gang Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ruoxin Zhou
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, P. R. China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xue Xiao
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, P. R. China
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
12
|
Hewitt KA, Herbert CA, Jarvo ER. Synthesis of Vicinal Carbocycles by Intramolecular Nickel-Catalyzed Conjunctive Cross-Electrophile Coupling Reaction. Org Lett 2022; 24:6093-6098. [PMID: 35926218 PMCID: PMC9396665 DOI: 10.1021/acs.orglett.2c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A nickel-catalyzed intramolecular conjunctive cross-electrophile
coupling reaction has been established. This method enables the synthesis
of 3,5-vicinal carbocyclic rings found in numerous biologically active
compounds and natural products. We provide mechanistic experiments
that indicate this reaction proceeds through alkyl iodides formed
in situ, initiates at the secondary electrophilic center, and proceeds
through radical intermediates.
Collapse
Affiliation(s)
- Kirsten A Hewitt
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Claire A Herbert
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Elizabeth R Jarvo
- Department of Chemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
13
|
Ma T, Li X, Ping Y, Kong W. Synthesis of
gem
‐Difluoroalkenes
via
Ni‐Catalyzed Three‐Component
Defluorinative Reductive
Cross‐Coupling
of Organohalides, Alkenes and Trifluoromethyl Alkenes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Teng Ma
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Xiao Li
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Yuanyuan Ping
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| | - Wangqing Kong
- The Institute for Advanced Studies (IAS), Wuhan University Wuhan 430072 People's Republic of China
| |
Collapse
|
14
|
Xi X, Chen Y, Yuan W. Nickel-Catalyzed Three-Component Alkylacylation of Alkenes Enabled by a Photoactive Electron Donor-Acceptor Complex. Org Lett 2022; 24:3938-3943. [PMID: 35605019 DOI: 10.1021/acs.orglett.2c01237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electron donor-acceptor complex-enabled, nickel-catalyzed three-component net-reductive 1,2-alkylacylation of alkenes is developed. This conjunctive reductive acyl cross-coupling process obviates the use of an exogenous photocatalyst and a stoichiometric metal-based reductant, affording various synthetically useful 1,3-dicarbonyl compounds in good yields with a broad substrate scope and excellent functional group tolerance. Both alkyl and acyl electrophiles are derived from the highly abundant and readily accessible carboxylic acids, making the catalytic 1,2-dicarbofunctionalization more synthetically general and sustainable.
Collapse
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
15
|
Zhou X, Guo L, Zhang H, Xia RY, Yang C, Xia W. Nickel‐Catalyzed Reductive Acylation of Carboxylic Acids with Alkyl Halides and
N
‐Hydroxyphthalimide Esters Enabled by Electrochemical Process. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Zhou
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Haoxiang Zhang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Raymond Yang Xia
- The Affiliated International School of Shenzhen University Shenzhen 518054 People's Republic of China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
16
|
Wang D, Ackermann L. Three-component carboacylation of alkenes via cooperative nickelaphotoredox catalysis. Chem Sci 2022; 13:7256-7263. [PMID: 35799820 PMCID: PMC9214884 DOI: 10.1039/d2sc02277j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis. A wealth of ketones with high levels of structural complexity was rapidly obtained via direct functionalization of C(sp2)/C(sp3)–H bonds in a modular manner. Furthermore, a regioselective late-stage modification of natural products showcased the practical utility of the strategy, generally featuring high resource economy and ample substrate scope. Various commercially available acyl chlorides, aldehydes, and alkanes were exploited for versatile three-component 1,2-carboacylations of alkenes to forge two vicinal C–C bonds through the cooperative action of nickel and sodium decatungstate catalysis.![]()
Collapse
Affiliation(s)
- Dingyi Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Germany
| |
Collapse
|
17
|
Lei W, Liu H, Li Y, Fang Y. Nickel-catalysed SET-reduction-based access to functionalized allenes via 1,4-carbohydrogenation of 1,3-enynes with alkyl bromides. Org Chem Front 2022. [DOI: 10.1039/d2qo00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allene synthesis: Using reductive radical–polar crossover as the strategy, functionalized allenes could be easily accessed via the reactions of 1,3-enynes with alkyl bromides enabled by nickel catalysis.
Collapse
Affiliation(s)
- Wan Lei
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China
| | - Hong Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China
| | - Yan Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Ministry-of-Education Key Laboratory for Synthesis and Application of Organic Functional Molecules, Hubei University, No. 368 YouyiDadao, Wuhan 430062, China
| | - Yewen Fang
- School of Materials and Chemical Engineering, Ningbo University of Technology, No. 201 Fenghua Road, Ningbo 315211, China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Gao P, Niu YJ, Yang F, Guo LN, Duan XH. Three-component 1,2-dicarbofunctionalization of alkenes involving alkyl radicals. Chem Commun (Camb) 2021; 58:730-746. [PMID: 34931629 DOI: 10.1039/d1cc05730h] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
1,2-Dicarbofunctionalization of alkenes represents an appealing strategy for chemical bond formation in organic synthesis, which could enable the rapid construction of molecular complexity from simple and readily available starting materials by incorporating two functional groups onto a carbon-carbon double bond in one step. In this field, the dicarbofunctionalization of alkenes with different alkyl radicals in a controlled manner represents an elegant and versatile strategy to access structurally diverse functionalized alkanes, which have witnessed significant progress over the last five years. Due to the importance of alkyl radicals in organic synthesis and medicinal chemistry, this review provides a comprehensive perspective on the development of alkyl radical precursors including electrophilic precursors such as alkyl halides, alkyl peroxides, alkyl NHP esters, cycloketone oxime esters, and Katritzky pyridinium salts, and nucleophilic precursors such as alkyl acids, alkyl oxalates, alkylborates, alkylsilicates, and unactivated hydrocarbons, which generate alkyl radicals by photocatalysis or transition metal catalysis to engage in dicarbofunctionalization under oxidative reaction conditions, redox-neutral conditions, or reductive conditions. The mechanisms of these dicarbofunctionalization reactions have also been discussed in detail.
Collapse
Affiliation(s)
- Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yue-Jie Niu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Fan Yang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
19
|
Jin Y, Wen H, Yang F, Ding D, Wang C. Synthesis of Multisubstituted Allenes via Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
20
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni‐Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX
2
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Laura M. Wickham
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Bijay Shrestha
- Current address: Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| |
Collapse
|
21
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni-Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX 2 *. Angew Chem Int Ed Engl 2021; 60:22977-22982. [PMID: 34427992 PMCID: PMC8490319 DOI: 10.1002/anie.202110459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/08/2022]
Abstract
We report a Ni-catalyzed regioselective arylbenzylation of alkenylarenes with benzyl halides and arylzinc reagents. The reaction furnishes differently substituted 1,1,3-triarylpropyl structures that are reminiscent of the cores of oligoresveratrol natural products. The reaction is also compatible for the coupling of internal alkenes, secondary benzyl halides and variously substituted arylzinc reagents. Kinetic studies reveal that the reaction proceeds with a rate-limiting single-electron-transfer process and is autocatalyzed by in-situ-generated ZnX2 . The reaction rate is amplified by a factor of three through autocatalysis upon addition of ZnX2 .
Collapse
Affiliation(s)
| | | | | | | | | | - Ramesh Giri
- Department of Chemistry Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
22
|
Zhu S, Zhao X, Li H, Chu L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem Soc Rev 2021; 50:10836-10856. [PMID: 34605828 DOI: 10.1039/d1cs00399b] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The catalytic dicarbofunctionalization of unsaturated π bonds represents a powerful platform for the rapid construction of complex motifs. Despite remarkable progress, novel and efficient methods for achieving such transformations under milder conditions with chemo-, regio-, and stereoselectivity still remain a significant challenge; thus, their development is highly desirable. Recently, the merging of nickel catalysis with radical chemistry offers a new and benign platform for the catalytic dicarbofunctionalization of unsaturated π bonds with unprecedented reactivity and selectivity. In this review, we summarize the recent advances in this area by underpinning the catalytic domino transformations involving radical capture by nickel to provide a clear overview of reaction designs and mechanistic scenarios.
Collapse
Affiliation(s)
- Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Xian Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Huan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
23
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Vivek Aryal
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Margaret G. Lakomy
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
24
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel-Catalyzed Regioselective Alkenylarylation of γ,δ-Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021; 60:19092-19096. [PMID: 34115911 PMCID: PMC8373804 DOI: 10.1002/anie.202104871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Indexed: 11/07/2022]
Abstract
We disclose a nickel-catalyzed reaction, which enabled us to difunctionalize unactivated γ,δ-alkenes in ketones with alkenyl triflates and arylboronic esters. The reaction was made feasible by the use of 5-chloro-8-hydroxyquinoline as a ligand along with NiBr2 ⋅DME as a catalyst and LiOtBu as base. The reaction proceeded with a wide range of cyclic, acyclic, endocyclic and exocyclic alkenyl ketones, and electron-rich and electron-deficient arylboronate esters. The reaction also worked with both cyclic and acyclic alkenyl triflates. Control experiments indicate that carbonyl coordination is required for the reaction to proceed.
Collapse
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vivek Aryal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Doleshwar Niroula
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rishi R. Sapkota
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Margaret G. Lakomy
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
25
|
Abstract
Herein we report a nickel-catalyzed asymmetric reductive dicarbamoylation of alkenes, in which tethered carbamoyl chlorides and isocyanates serve as distinct electrophilic carbamoylating agents, providing new access to chiral oxindoles bearing an amide-substituted quaternary stereogenic center.
Collapse
Affiliation(s)
- Jiaoyang Wu
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
26
|
Banovetz HK, Vickerman KL, David CM, Alkan M, Stanley LM. Palladium-Catalyzed Intermolecular Alkene Carboacylation via Ester C–O Bond Activation. Org Lett 2021; 23:3507-3512. [DOI: 10.1021/acs.orglett.1c00940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Haley K. Banovetz
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Kevin L. Vickerman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Colton M. David
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Melisa Alkan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M. Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|