1
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Zhao Y, Zhang J, Zhan ZJ, Fan Q, Xiao XQ, Bai Y, Ni SF, Shao X. Synthesis of Azo-Substituted Bicyclo[1.1.1]pentanes (BCPs) via Base-Promoted Halogen Atom Transfer. Org Lett 2024; 26:4406-4410. [PMID: 38742800 DOI: 10.1021/acs.orglett.4c01546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Because of the three-dimensional bioisosteric feature, bicyclo[1.1.1]pentylamines (BCPAs) are valuable scaffolds in synthetic chemistry and medicinal chemistry. Here, we report a Halogen Atom Transfer (XAT) mediated radical C-N coupling between C3-iodo-BCPs and diazonium salts in the presence of base. Similarly, a multicomponent reaction (MCR) enables the simultaneous construction of the C-C bond and C-N bond simultaneously. Versatile roles of diazonium salts were also explored.
Collapse
Affiliation(s)
- Yanchuang Zhao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jing Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhi-Jin Zhan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou 515063, P. R. China
| | - Qiujin Fan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guang-dong Province, Shantou University, Shantou 515063, P. R. China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
3
|
Diepers HE, Walker JCL. (Bio)isosteres of ortho- and meta-substituted benzenes. Beilstein J Org Chem 2024; 20:859-890. [PMID: 38655554 PMCID: PMC11035989 DOI: 10.3762/bjoc.20.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Saturated bioisosteres of substituted benzenes offer opportunities to fine-tune the properties of drug candidates in development. Bioisosteres of para-benzenes, such as those based on bicyclo[1.1.1]pentane, are now very common and can be used to increase aqueous solubility and improve metabolic stability, among other benefits. Bioisosteres of ortho- and meta-benzenes were for a long time severely underdeveloped by comparison. This has begun to change in recent years, with a number of potential systems being reported that can act as bioisosteres for these important fragments. In this review, we will discuss these recent developments, summarizing the synthetic approaches to the different bioisosteres as well as the impact they have on the physiochemical and biological properties of pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- H Erik Diepers
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Light-Driven Synthesis and Functionalization of Bicycloalkanes, Cubanes and Related Bioisosteres. Angew Chem Int Ed Engl 2024; 63:e202317333. [PMID: 38179801 DOI: 10.1002/anie.202317333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.
Collapse
Affiliation(s)
- Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
5
|
Anderson JM, Poole DL, Cook GC, Murphy JA, Measom ND. Organometallic Bridge Diversification of Bicyclo[1.1.1]pentanes. Chemistry 2024; 30:e202304070. [PMID: 38117748 DOI: 10.1002/chem.202304070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Bicyclo[1.1.1]pentane (BCP) derivatives have attracted significant recent interest in drug discovery as alkyne, tert-butyl and arene bioisosteres, where their incorporation is frequently associated with increased compound solubility and metabolic stability. While strategies for functionalisation of the bridgehead (1,3) positions are extensively developed, platforms allowing divergent substitution at the bridge (2,4,5) positions remain limited. Recent reports have introduced 1-electron strategies for arylation and incorporation of a small range of other substituents, but are limited in terms of scope, yields or practical complexity. Herein, we show the synthesis of diverse 1,2,3-trifunctionalised BCPs through lithium-halogen exchange of a readily accessible BCP bromide. When coupled with medicinally relevant product derivatisations, our developed 2-electron "late stage" approach provides rapid and straightforward access to unprecedented BCP structural diversity (>20 hitherto-unknown motifs reported). Additionally, we describe a method for the synthesis of enantioenriched "chiral-at-BCP" bicyclo[1.1.1]pentanes through a novel stereoselective bridgehead desymmetrisation.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Darren L Poole
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - Gemma C Cook
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK, G1 1XL
| | - Nicholas D Measom
- Medicinal Chemistry, GSK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, UK, SG1 2NY
| |
Collapse
|
6
|
Yang Y, Tsien J, Dykstra R, Chen SJ, Wang JB, Merchant RR, Hughes JME, Peters BK, Gutierrez O, Qin T. Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates. Nat Chem 2024; 16:285-293. [PMID: 37884667 PMCID: PMC10922318 DOI: 10.1038/s41557-023-01342-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C2-substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C3)-boronic pinacol esters (Bpin), leaving the C2-Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C3) and bridge (C2) positions enable access to C1,C2-disubstituted and C1,C2,C3-trisubstituted BCPs that encompass previously unexplored chemical space.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan Dykstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Si-Jie Chen
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - James B Wang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Jonathan M E Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Byron K Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, USA.
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Harwood LA, Xiong Z, Christensen KE, Wang R, Wong LL, Robertson J. Selective P450 BM3 Hydroxylation of Cyclobutylamine and Bicyclo[1.1.1]pentylamine Derivatives: Underpinning Synthetic Chemistry for Drug Discovery. J Am Chem Soc 2023; 145:27767-27773. [PMID: 38051939 PMCID: PMC10740007 DOI: 10.1021/jacs.3c10542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Achieving single-step syntheses of a set of related compounds divergently and selectively from a common starting material affords substantial efficiency gains when compared with preparing those same compounds by multiple individual syntheses. In order for this approach to be realized, complementary reagent systems must be available; here, a panel of engineered P450BM3 enzymes is shown to fulfill this remit in the selective C-H hydroxylation of cyclobutylamine derivatives at chemically unactivated sites. The oxidations can proceed with high regioselectivity and stereoselectivity, producing valuable bifunctional intermediates for synthesis and applications in fragment-based drug discovery. The process also applies to bicyclo[1.1.1]pentyl (BCP) amine derivatives to achieve the first direct enantioselective functionalization of the bridging methylenes and open a short and efficient route to chiral BCP bioisosteres for medicinal chemistry. The combination of substrate, enzyme, and reaction engineering provides a powerful general platform for small-molecule elaboration and diversification.
Collapse
Affiliation(s)
- Lucy A. Harwood
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ziyue Xiong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ruiyao Wang
- Wisdom
Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool
University, Suzhou Industrial
Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Luet L. Wong
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
- Inorganic
Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K.
| | - Jeremy Robertson
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
- Oxford
Suzhou Centre for Advanced Research, Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
8
|
Denisenko A, Garbuz P, Makovetska Y, Shablykin O, Lesyk D, Al-Maali G, Korzh R, Sadkova IV, Mykhailiuk PK. 1,2-Disubstituted bicyclo[2.1.1]hexanes as saturated bioisosteres of ortho-substituted benzene. Chem Sci 2023; 14:14092-14099. [PMID: 38098705 PMCID: PMC10718076 DOI: 10.1039/d3sc05121h] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Bicyclo[2.1.1]hexanes have been synthesized, characterized, and biologically validated as saturated bioisosteres of the ortho-substituted benzene ring. The incorporation of the 1,2-disubstituted bicyclo[2.1.1]hexane core into the structure of fungicides boscalid (BASF), bixafen (Bayer CS), and fluxapyroxad (BASF) gave saturated patent-free analogs with high antifungal activity.
Collapse
Affiliation(s)
- Aleksandr Denisenko
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Pavel Garbuz
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | | | - Oleh Shablykin
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine 02094 Kyiv Ukraine
| | - Dmytro Lesyk
- Bienta Winston Churchill st. 78 02094 Kyiv Ukraine
| | - Galeb Al-Maali
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
- Institute of Botany of the National Academy of Sciences of Ukraine 02094 Kyiv Ukraine
| | - Rodion Korzh
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Iryna V Sadkova
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Pavel K Mykhailiuk
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| |
Collapse
|
9
|
Abstract
The concept of strain in organic compounds is as old as modern organic chemistry and was initially introduced to justify the synthetic setbacks along the synthesis of small ring systems (pars construens of strain). In the last decades, chemists have developed an arsenal of strain-release reactions (pars destruens of strain) which can generate─with significant driving force─rigid aliphatic systems that can act as three-dimensional alternatives to (hetero)arenes. Photocatalysis added an additional dimension to strain-release processes by leveraging the energy of photons to create chemical complexity under mild conditions. This perspective presents the latest advancements in strain-release photocatalysis─with emphases on mechanisms, catalytic cycles, and current limitations─the unique chemical architectures that can be produced, and possible future directions.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York 10021, New York United States
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
10
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
11
|
Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, Al-Maali G, Borysko P, Mykhailiuk PK. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat Chem 2023:10.1038/s41557-023-01222-0. [PMID: 37277469 PMCID: PMC10396955 DOI: 10.1038/s41557-023-01222-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
The ortho-substituted phenyl ring is a basic structural element in chemistry. It is found in more than three hundred drugs and agrochemicals. During the past decade, scientists have tried to replace the phenyl ring in bioactive compounds with saturated bioisosteres to obtain novel patentable structures. However, most of the research in this area has been devoted to the replacement of the para-substituted phenyl ring. Here we have developed saturated bioisosteres of the ortho-substituted phenyl ring with improved physicochemical properties: 2-oxabicyclo[2.1.1]hexanes. Crystallographic analysis revealed that these structures and the ortho-substituted phenyl ring indeed have similar geometric properties. Replacement of the phenyl ring in marketed agrochemicals fluxapyroxad (BASF) and boscalid (BASF) with 2-oxabicyclo[2.1.1]hexanes dramatically improved their water solubility, reduced lipophilicity and most importantly retained bioactivity. This work suggests an opportunity for chemists to replace the ortho-substituted phenyl ring in bioactive compounds with saturated bioisosteres in medicinal chemistry and agrochemistry.
Collapse
Affiliation(s)
| | | | | | | | - Galeb Al-Maali
- Bienta, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
12
|
Wright BA, Matviitsuk A, Black MJ, García-Reynaga P, Hanna LE, Herrmann AT, Ameriks MK, Sarpong R, Lebold TP. Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J Am Chem Soc 2023; 145:10960-10966. [PMID: 37145091 PMCID: PMC10281541 DOI: 10.1021/jacs.3c02616] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azabicyclo[2.1.1]hexanes (aza-BCHs) and bicyclo[1.1.1]pentanes (BCPs) have emerged as attractive classes of sp3-rich cores for replacing flat, aromatic groups with metabolically resistant, three-dimensional frameworks in drug scaffolds. Strategies to directly convert, or "scaffold hop", between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to "scaffold hop" between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Michael J Black
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Luke E Hanna
- Janssen Research and Development, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Janssen Research and Development, San Diego, California 92121, United States
| | - Michael K Ameriks
- Janssen Research and Development, San Diego, California 92121, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Terry P Lebold
- Janssen Research and Development, San Diego, California 92121, United States
| |
Collapse
|
13
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Heteroarylation of Bicyclo[1.1.1]pentane Derivatives. Org Lett 2023; 25:2053-2057. [PMID: 36929825 DOI: 10.1021/acs.orglett.3c00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Herein, we report the decarboxylative Minisci heteroarylation of bicyclo[1.1.1]pentane (BCP) and 2-oxabicyclo[2.1.1]hexane (oBCH) derivatives at the bridge positions. In an operationally simple, photocatalyst-free process, free bridge carboxylic acids are directly coupled with nonprefunctionalized heteroarenes to provide rare examples of polysubstituted BCP and oBCH derivatives in synthetically useful yields. Additionally, the impact of the BCP core on the physicochemical properties of a representative example compared to those of its all-aromatic ortho- and meta-substituted analogues is evaluated.
Collapse
Affiliation(s)
- Joseph M Anderson
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K.,Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Nicholas D Measom
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - John A Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Darren L Poole
- Medicinal Chemistry, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| |
Collapse
|
14
|
Garry OL, Heilmann M, Chen J, Liang Y, Zhang X, Ma X, Yeung CS, Bennett DJ, MacMillan DWC. Rapid Access to 2-Substituted Bicyclo[1.1.1]pentanes. J Am Chem Soc 2023; 145:3092-3100. [PMID: 36696089 PMCID: PMC10680143 DOI: 10.1021/jacs.2c12163] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The replacement of aryl rings with saturated carbocyclic structures has garnered significant interest in drug discovery due to the potential for improved pharmacokinetic properties upon substitution. In particular, 1,3-difunctionalized bicyclo[1.1.1]pentanes (BCPs) have been widely adopted as bioisosteres for parasubstituted arene rings, appearing in a number of lead pharmaceutical candidates. However, despite the pharmaceutical value of 2-substituted BCPs as replacements for ortho- or meta-substituted arene rings, general and rapid syntheses of these scaffolds remain elusive. Current approaches to 2-substituted BCPs rely on installation of the bridge substituent prior to BCP core construction, leading to lengthy step counts and often nonmodular sequences. While challenging, direct functionalization of the strong bridge BCP C-H bonds would offer a more streamlined pathway to diverse 2-substituted BCPs. Here, we report a generalizable synthetic linchpin strategy for bridge functionalization via radical C-H abstraction of the BCP core. Through mild generation of a strong hydrogen atom abstractor, we rapidly synthesize novel 2-substituted BCP synthetic linchpins in one pot. These synthetic linchpins then serve as common precursors to complex 2-substituted BCPs, allowing one-step access to a number of previously inaccessible electrophile and nucleophile fragments at the 2-position via two new metallaphotoredox protocols. Altogether, this platform enables the expedient synthesis of four pharmaceutical analogues, all of which show similar or improved properties compared to their aryl-containing equivalents, demonstrating the potential of these 2-substituted BCPs in drug development.
Collapse
Affiliation(s)
- Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Michael Heilmann
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Jingjia Chen
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Yufan Liang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaheng Zhang
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| | - Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David Jonathan Bennett
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Ma X, Jiang Y. Synthesis of gem-Diboromethyl-Substituted Bicyclo[1.1.1]pentanes and Their Application in Palladium-Catalyzed Cross Couplings. J Org Chem 2023; 88:1665-1694. [PMID: 36695785 DOI: 10.1021/acs.joc.2c02701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe the first general transition-metal-free synthesis of gem-diboromethyl-substituted bicyclo[1.1.1]pentane (BCP) and other related C(sp3)-rich carbocyclic benzene bioisosteres from their corresponding p-tosylhydrazones. These novel functionalized benzene bioisosteres demonstrated unique reactivities toward palladium-catalyzed C(sp2)-C(sp3) cross couplings. The overall transformation can be applied to relatively complex substrates with potential utility in drug discovery.
Collapse
Affiliation(s)
- Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc. 33 Ave. Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Yuan Jiang
- Department of Analytical Research and Development, Merck & Co., Inc. 33 Ave. Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Iida T, Kanazawa J, Matsunaga T, Miyamoto K, Hirano K, Uchiyama M. Practical and Facile Access to Bicyclo[3.1.1]heptanes: Potent Bioisosteres of meta-Substituted Benzenes. J Am Chem Soc 2022; 144:21848-21852. [PMID: 36342862 DOI: 10.1021/jacs.2c09733] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is increasing interest in replacement of the planar aromatic rings of drug candidates with three-dimensional caged scaffolds in order to improve the physical properties, but bioisosteres of meta-substituted benzenes have remained elusive. We focused on the bicyclo[3.1.1]heptane (BCH) scaffold as a novel bioisostere of meta-substituted benzenes, anticipating that [3.1.1]propellane (2) would be a versatile precursor of diversely functionalized BCHs. Here, we describe a practical preparative method for [3.1.1]propellane from newly developed 1,5-diiodobicyclo[3.1.1]heptane (1), as well as difunctionalization reactions of 2 leading to functionalized BCHs. We also report postfunctionalization reactions of these products.
Collapse
Affiliation(s)
- Toranosuke Iida
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Junichiro Kanazawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadafumi Matsunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazunori Miyamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keiichi Hirano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
17
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro-Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022; 61:e202205103. [PMID: 35638404 PMCID: PMC9401599 DOI: 10.1002/anie.202205103] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 12/27/2022]
Abstract
After more than 20 years of trials, a practical scalable approach to fluoro-substituted bicyclo[1.1.1]pentanes (F-BCPs) has been developed. The physicochemical properties of the F-BCPs have been studied, and the core was incorporated into the structure of the anti-inflammatory drug Flurbiprofen in place of the fluorophenyl ring.
Collapse
|
18
|
Bychek R, Mykhailiuk PK. A Practical and Scalable Approach to Fluoro‐Substituted Bicyclo[1.1.1]pentanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman Bychek
- Enamine Ltd. Chervonotkatska 60 02094 Kyiv Ukraine
| | | |
Collapse
|
19
|
Harmata AS, Spiller TE, Sowden MJ, Stephenson CRJ. Photochemical Formal (4 + 2)-Cycloaddition of Imine-Substituted Bicyclo[1.1.1]pentanes and Alkenes. J Am Chem Soc 2021; 143:21223-21228. [PMID: 34902245 PMCID: PMC9241356 DOI: 10.1021/jacs.1c10541] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Amines containing bridged bicyclic carbon skeletons are desirable building blocks for medicinal chemistry. Herein, we report the conversion of bicyclo[1.1.1]pentan-1-amines to a wide range of polysubstituted bicyclo[3.1.1]heptan-1-amines through a photochemical, formal (4 + 2)-cycloaddition of an intermediate imine diradical. To our knowledge, this is the first reported method to convert the bicyclo[1.1.1]pentane skeleton to the bicyclo[3.1.1]heptane skeleton. Hydrolysis of the imine products gives complex, sp3-rich primary amine building blocks.
Collapse
Affiliation(s)
| | | | | | - Corey R. J. Stephenson
- Corresponding Author Corey R. J. Stephenson – Department of Chemistry, University of Michigan, 940 North University Avenue, Ann Arbor, Michigan 48109, United States;
| |
Collapse
|
20
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| | - John A. Murphy
- Department of Pure and Applied Chemistry WestCHEM University of Strathclyde 295 Cathedral Street Glasgow Scotland G1 1XL UK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage Hertfordshire SG1 2NY UK
| |
Collapse
|
21
|
Anderson JM, Measom ND, Murphy JA, Poole DL. Bridge Functionalisation of Bicyclo[1.1.1]pentane Derivatives. Angew Chem Int Ed Engl 2021; 60:24754-24769. [PMID: 34151501 PMCID: PMC9291545 DOI: 10.1002/anie.202106352] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 12/30/2022]
Abstract
"Escaping from flatland", by increasing the saturation level and three-dimensionality of drug-like compounds, can enhance their potency, selectivity and pharmacokinetic profile. One approach that has attracted considerable recent attention is the bioisosteric replacement of aromatic rings, internal alkynes and tert-butyl groups with bicyclo[1.1.1]pentane (BCP) units. While functionalisation of the tertiary bridgehead positions of BCP derivatives is well-documented, functionalisation of the three concyclic secondary bridge positions remains an emerging field. The unique properties of the BCP core present considerable synthetic challenges to the development of such transformations. However, the bridge positions provide novel vectors for drug discovery and applications in materials science, providing entry to novel chemical and intellectual property space. This Minireview aims to consolidate the major advances in the field, serving as a useful reference to guide further work that is expected in the coming years.
Collapse
Affiliation(s)
- Joseph M. Anderson
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
- Department of Pure and Applied ChemistryWestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Nicholas D. Measom
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| | - John A. Murphy
- Department of Pure and Applied ChemistryWestCHEMUniversity of Strathclyde295 Cathedral StreetGlasgowScotlandG1 1XLUK
| | - Darren L. Poole
- GlaxoSmithKline Medicines Research CentreGunnels Wood RoadStevenageHertfordshireSG1 2NYUK
| |
Collapse
|
22
|
Ripenko V, Vysochyn D, Klymov I, Zhersh S, Mykhailiuk PK. Large-Scale Synthesis and Modifications of Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acid (BCP). J Org Chem 2021; 86:14061-14068. [PMID: 34166594 PMCID: PMC8524415 DOI: 10.1021/acs.joc.1c00977] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
In flow photochemical addition of propellane to
diacetyl allowed construction of the bicyclo[1.1.1]pentane (BCP) core
in a 1 kg scale within 1 day. Haloform reaction of the formed diketone
in batch afforded bicyclo[1.1.1]pentane-1,3-dicarboxylic acid in a
multigram amount. Representative gram scale transformations of the
diacid were also performed to obtain various BCP-containing building
blocks—alcohols, acids, amines, trifluoroborates, amino acids, etc.—for medicinal chemistry.
Collapse
Affiliation(s)
- Vasyl Ripenko
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
| | | | - Ivan Klymov
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Serhii Zhersh
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine
| | | |
Collapse
|
23
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
24
|
Yang Y, Tsien J, Hughes JME, Peters BK, Merchant RR, Qin T. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat Chem 2021; 13:950-955. [PMID: 34584254 PMCID: PMC8739920 DOI: 10.1038/s41557-021-00786-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Bicyclic hydrocarbons, and bicyclo[1.1.1]pentanes (BCPs) in particular, are playing an emerging role as saturated bioisosteres in pharmaceutical, agrochemical and materials chemistry. Taking advantage of strain-release strategies, prior synthetic studies have featured the synthesis of bridgehead-substituted (C1, C3) BCPs from [1.1.1]propellane. Here, we describe an approach to access multisubstituted BCPs via intramolecular cyclization. In addition to C1,C3-disubstituted BCPs, this method also enables the construction of underexplored multisubstituted (C1, C2 and C3) BCPs from readily accessible cyclobutanones. The broad generality of this method has also been examined through the synthesis of a variety of other caged bicyclic molecules, ranging from [2.1.1] to [3.2.1] scaffolds. The modularity afforded by the pendant bridgehead boron pinacol esters generated during the cyclization reaction has been demonstrated through several downstream functionalizations, highlighting the ability of this approach to enable the programmed and divergent synthesis of multisubstituted bicyclic hydrocarbons.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Jonathan M. E. Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Byron K. Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States.,Correspondence to:
| |
Collapse
|
25
|
Zhao JX, Chang YX, He C, Burke BJ, Collins MR, Del Bel M, Elleraas J, Gallego GM, Montgomery TP, Mousseau JJ, Nair SK, Perry MA, Spangler JE, Vantourout JC, Baran PS. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: Long-sought-after mimetics for ortho/ meta-substituted arenes. Proc Natl Acad Sci U S A 2021; 118:e2108881118. [PMID: 34244445 PMCID: PMC8285974 DOI: 10.1073/pnas.2108881118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.
Collapse
Affiliation(s)
- Jin-Xin Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yu-Xuan Chang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Chi He
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Benjamin J Burke
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Michael R Collins
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121;
| | - Matthew Del Bel
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Jeff Elleraas
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Gary M Gallego
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - T Patrick Montgomery
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - James J Mousseau
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT 06340
| | - Sajiv K Nair
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | - Matthew A Perry
- Discovery Sciences, Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT 06340
| | - Jillian E Spangler
- Oncology Medicinal Chemistry, Pfizer Worldwide Research, Development and Medical, San Diego, CA 92121
| | | | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| |
Collapse
|
26
|
|