1
|
Jiang AL, Zhou G, Jiang BY, Zhou T, Xu XT, Shi BF. Pd-Catalyzed Atroposelective C-H Olefination: Diverse Synthesis of Axially Chiral Biaryl-2-carboxylic Acids. Org Lett 2024; 26:5670-5675. [PMID: 38923904 DOI: 10.1021/acs.orglett.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Axially chiral carboxylic acids are important motifs in chiral catalysts and ligands. We herein reported the synthesis of axially chiral carboxylic acids via Pd(II)-catalyzed atroposelective C-H olefination using carboxylic acid as the native directing group. A broad range of axial chiral biaryl-2-carboxylic acids were synthesized in good yields with high enantioselectivities (up to 84% yield with 99% ee). Gram-scale reaction and further transformation reactions also provide a platform for synthetic applications of this method.
Collapse
Affiliation(s)
- Ao-Lian Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
2
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Qian PF, Zhou T, Shi BF. Transition-metal-catalyzed atroposelective synthesis of axially chiral styrenes. Chem Commun (Camb) 2023; 59:12669-12684. [PMID: 37807950 DOI: 10.1039/d3cc03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Axially chiral styrenes, a type of atropisomer analogous to biaryls, have attracted great interest because of their unique presence in natural products and asymmetric catalysis. Since 2016, a number of methodologies have been developed for the atroposelective construction of these chiral skeletons, involving both transition metal catalysis and organocatalysis. In this feature article, we aim to provide a comprehensive understanding of recent advances in the asymmetric synthesis of axially chiral styrenes catalyzed by transition metals, integrating scattered work with different catalytic systems together. This feature article is cataloged into five sections according to the strategies, including asymmetric coupling, enantioselective C-H activation, central-to-axial chirality transfer, asymmetric alkyne functionalization, and atroposelective [2+2+2] cycloaddition.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Tao Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
4
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
5
|
Uchikura T, Kato S, Makino Y, Fujikawa MJ, Yamanaka M, Akiyama T. Chiral Phosphoric Acid-Palladium(II) Complex Catalyzed Asymmetric Desymmetrization of Biaryl Compounds by C(sp 3)-H Activation. J Am Chem Soc 2023. [PMID: 37440358 DOI: 10.1021/jacs.3c03552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Desymmetrization is an essential method for the synthesis of chiral compounds, particularly chiral biaryls. We have developed an enantioselective synthesis of axially chiral biaryls by desymmetrization using C(sp3)-H activation catalyzed by chiral palladium phosphate. Mechanistic studies show that C-H activation is the rate- and enantiomer-determining step. To the best of our knowledge, this is the first report of asymmetric desymmetrization of axially chiral compounds by C(sp3)-H activation.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Sotaro Kato
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Yudai Makino
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Megumi J Fujikawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-41-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
6
|
Yao L, Gashaw Woldegiorgis A, Huang S, Wang Y, Lin X. Palladium-Catalyzed Directed Atroposelective C-H Iodination to Synthesize Axial Chiral Biaryl N-Oxides via Enantioselective Desymmetrization Strategy. Chemistry 2023; 29:e202203051. [PMID: 36263903 DOI: 10.1002/chem.202203051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 12/04/2022]
Abstract
The discovery of enantioselective desymmetrization reactions to provide practical synthesis of enantio-enriched atropisomeric biaryls is a challenging topic in the field of asymmetric catalysis. Herein, we report a highly enantioselective desymmetrization reaction for the synthesis of axially chiral biaryl N-oxides by atroposelective C-H iodination by using Pd(II) coordinated by N-benzoyl-l-phenylalanine as a chiral catalyst at room temperature. A broad range of products were obtained in high yields (up to 99 %) with excellent enantioselectivities (up to 98 % ee). The products could be synthesized in gram scale, one of which was proved to be a powerful organocatalyst in asymmetric allylation reaction. Mechanistic evidence as well as DFT calculations point towards the factors that lead to high reactivity and excellent enantiocontrol in this reaction.
Collapse
Affiliation(s)
- Linxi Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Alemayehu Gashaw Woldegiorgis
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shaoying Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yongtao Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xufeng Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
7
|
Xiang X, He Z, Dong X. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
8
|
Photoinitiated multicomponent cascade reaction of Nheteroarenes with unactivated alkenes and trimethylsilyl azide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Jia C, Wu N, Li G, Cui X. meta-Allylation of Arenes via Ruthenium-Catalyzed Cross-Dehydrogenative Coupling. J Org Chem 2022; 87:6934-6941. [PMID: 35486707 DOI: 10.1021/acs.joc.2c00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A successful example of oxidative meta-dehydrogenative allylation of arenes with alkenes has been developed using Ru(PPh3)3Cl2 as a catalyst and DTBP as an oxidant. In the allylation process, pyrimidines, pyrazoles, and purines, found widely in nucleosides, were effective auxiliary groups. Gram-scale experiments took place smoothly under optimized conditions. Mechanistic studies indicated that ruthenium-catalyzed meta-dehydrogenative allylation was a free-radical process. The allylation process developed herein provides an efficient and practical strategy to prepare versatile meta-allylated arenes.
Collapse
Affiliation(s)
- Chunqi Jia
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Nini Wu
- College of Chemistry and Chemical Engineering, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang 455002, P. R. China
| | - Gang Li
- College of Chemistry and Chemical Engineering, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, Anyang Normal University, Anyang 455002, P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
10
|
Li Y, Liou YC, Chen X, Ackermann L. Thioether-enabled palladium-catalyzed atroposelective C-H olefination for N-C and C-C axial chirality. Chem Sci 2022; 13:4088-4094. [PMID: 35440980 PMCID: PMC8985512 DOI: 10.1039/d2sc00748g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 12/05/2022] Open
Abstract
Thioethers allowed for highly atroposelective C-H olefinations by a palladium/chiral phosphoric acid catalytic system under ambient air. Both N-C and C-C axial chiral (hetero)biaryls were successfully constructed, leading to a broad range of axially chiral N-aryl indoles and biaryls with excellent enantioselectivities up to 99% ee. Experimental and computational studies were conducted to unravel the walking mode for the atroposelective C-H olefination. A plausible chiral induction model for the enantioselectivity-determining step was established by detailed DFT calculations.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Yan-Cheng Liou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
11
|
|
12
|
Cen S, Zhang Z. Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Song H, Li Y, Yao QJ, Shi BF. Modification of [2.2]paracyclophane through cobalt-catalyzed ortho-C–H allylation and acyloxylation. Org Chem Front 2022. [DOI: 10.1039/d2qo00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first cobalt-catalyzed ortho-C–H allylation and acyloxylation of [2,2]paracyclophanes are reported.
Collapse
Affiliation(s)
- Hong Song
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Ya Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| |
Collapse
|
14
|
Wang Q, Yan Z, Xing D. Nickel(0)-catalysed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids by a bifunctional temporary directing group strategy. Org Chem Front 2022. [DOI: 10.1039/d2qo00546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a nickel(0)-catalyzed linear-selective hydroarylation of 2-aminostyrenes with arylboronic acids using a bifunctional temporary directing group strategy. In the presence of a catalytic amount of commercially available 3,5-dibromosalicylaldehyde, an...
Collapse
|
15
|
Han Z, Jin J, Woldegiorgis AG, Lin X. Organocatalytic diastereo- and enantioselective conjugate addition of pyrazol-3-ones to 3-trifluoroethylidene oxindoles with a newly developed squaramide catalyst. RSC Adv 2022; 12:27012-27021. [PMID: 36320851 PMCID: PMC9490773 DOI: 10.1039/d2ra05088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient organocatalytic conjugated addition reaction of pyrazol-3-ones with 3-trifluoroethylidene oxindoles has been developed for the synthesis of enantioenriched triflouromethylated indolin-2-ones bearing adjacent tertiary chiral centers in good yields and good to excellent diastereo- and enantioselectivities. The use of a newly developed chiral spirobiindane-derived squaramide catalyst is essential in achieving high diastereo- and enantioselectivities. Organocatalytic diastereo- and enantioselective conjugate addition of pyrazol-3-ones to 3-trifluoroethylidene oxindoles with a newly developed squaramide catalyst has been developed.![]()
Collapse
Affiliation(s)
- Zhao Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiaping Jin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | | | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
16
|
Jia ZS, Wu YJ, Yao QJ, Xu XT, Zhang K, Shi BF. Pd(II)-Catalyzed Atroposelective C-H Allylation: Synthesis of Enantioenriched N-Aryl Peptoid Atropisomers. Org Lett 2021; 24:304-308. [PMID: 34964649 DOI: 10.1021/acs.orglett.1c03967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Pd-catalyzed atroposelective C-H allylation with 1,1-disubstituted alkenes was developed for the synthesis of enantioenriched N-aryl peptoid atropisomers via β-H elimination using commercially available and inexpensive L-pGlu-OH as a chiral ligand. Exclusive allylic selectivity was achieved. Additionally, a series of enantioenriched N-aryl peptoid atropisomers were obtained in synthetically useful yields with excellent enantioselectivities (up to 90% yield and 97% ee).
Collapse
Affiliation(s)
- Zhen-Sheng Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Yong-Jie Wu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Woldegiorgis AG, Lin X. Recent advances in the asymmetric phosphoric acid-catalyzed synthesis of axially chiral compounds. Beilstein J Org Chem 2021; 17:2729-2764. [PMID: 34876929 PMCID: PMC8609246 DOI: 10.3762/bjoc.17.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years, the synthesis of axially chiral compounds has received considerable attention due to their extensive application as biologically active compounds in medicinal chemistry and as chiral ligands in asymmetric catalysis. Chiral phosphoric acids are recognized as efficient organocatalysts for a variety of enantioselective transformations. In this review, we summarize the recent development of chiral phosphoric acid-catalyzed synthesis of a wide range of axially chiral biaryls, heterobiaryls, vinylarenes, N-arylamines, spiranes, and allenes with high efficiency and excellent stereoselectivity.
Collapse
Affiliation(s)
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
18
|
Dhawa U, Wdowik T, Hou X, Yuan B, Oliveira JCA, Ackermann L. Enantioselective palladaelectro-catalyzed C-H olefinations and allylations for N-C axial chirality. Chem Sci 2021; 12:14182-14188. [PMID: 34760203 PMCID: PMC8565398 DOI: 10.1039/d1sc04687j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 01/25/2023] Open
Abstract
Enantioselective palladaelectro-catalyzed C–H alkenylations and allylations were achieved with easily-accessible amino acids as transient directing groups. This strategy provided access to highly enantiomerically-enriched N–C axially chiral scaffolds under exceedingly mild conditions. The synthetic utility of our strategy was demonstrated by a variety of alkenes, while the versatility of our approach was reflected by atroposelective C–H allylations. Computational studies provided insights into a facile C–H activation by a seven-membered palladacycle. Enantioselective palladaelectro-catalyzed C–H alkenylations and allylations were achieved by the means of an easily-accessible amino acid for the synthesis of N–C axially chiral indole biaryls.![]()
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Tomasz Wdowik
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Binbin Yuan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany .,Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
19
|
Woldegiorgis AG, Han Z, Lin X. Chiral Phosphoric Acid‐Catalyzed Enantioselective Synthesis of Pyrazole‐Based Unnatural α‐Amino Acid Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Alemayehu Gashaw Woldegiorgis
- Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhao Han
- Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xufeng Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
20
|
Yuan WK, Shi BF. Synthesis of Chiral Spirolactams via Sequential C-H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co II /Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021; 60:23187-23192. [PMID: 34435722 DOI: 10.1002/anie.202108853] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Indexed: 12/25/2022]
Abstract
An unprecedented enantioselective synthesis of spiro-γ-lactams via a sequential C-H olefination/asymmetric [4+1] spirocyclization under a simple CoII /chiral spiro phosphoric acid (SPA) binary system is reported. A range of biologically important spiro-γ-lactams are obtained with high levels of enantioselectivity (up to 98 % ee). The concise, asymmetric synthesis of an aldose reductase inhibitor was successfully achieved. Notably, contrast to previous reports that relied on the use of cyclopentadienyl or its derivatives (achiral Cp*, CptBu , or chiral Cpx ) ligated CoIII complexes requiring tedious steps to prepare, cheap and commercially available cobalt(II) acetate tetrahydrate was used as an efficient precatalyst.
Collapse
Affiliation(s)
- Wen-Kui Yuan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
21
|
Gong LZ, Wang PS. Asymmetric C–H Functionalization Enabled by Pd/Chiral Phosphoric Acid Combined Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1662-7096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractOver the past decade, the combination of chiral phosphoric acid and palladium catalysis has emerged as a robust strategy to accomplish the regio- and stereoselective functionalization of inactive C–H bonds, enabling access to various types of chirality (central, planar, and axial). This review article describes the origin and advances in the asymmetric functionalization of allylic C–H, C(sp2)–H, and C(sp3)–H bonds enabled by chiral phosphoric acid and palladium combined catalysis.1 Introduction2.1 Enantioselective Allylic C–H Functionalization2.2 Enantioselective Non-allylic C(sp3)–H Functionalization2.3 Enantioselective C(sp2)–H Functionalization3 Conclusion
Collapse
Affiliation(s)
- Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences
| | - Pu-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China
| |
Collapse
|
22
|
Yuan W, Shi B. Synthesis of Chiral Spirolactams via Sequential C−H Olefination/Asymmetric [4+1] Spirocyclization under a Simple Co
II
/Chiral Spiro Phosphoric Acid Binary System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wen‐Kui Yuan
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| |
Collapse
|
23
|
Liu CX, Zhang WW, Yin SY, Gu Q, You SL. Synthesis of Atropisomers by Transition-Metal-Catalyzed Asymmetric C-H Functionalization Reactions. J Am Chem Soc 2021; 143:14025-14040. [PMID: 34432467 DOI: 10.1021/jacs.1c07635] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.
Collapse
Affiliation(s)
- Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Si-Yong Yin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Woldegiorgis AG, Han Z, Lin X. Organocatalytic Asymmetric Dearomatization Reaction for the Synthesis of Axial Chiral Allene-Derived Naphthalenones Bearing Quaternary Stereocenters. Org Lett 2021; 23:6606-6611. [PMID: 34387497 DOI: 10.1021/acs.orglett.1c01849] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The highly regio-, diastereo-, and enantioselective dearomatization reaction of 1-substituted 2-naphthols and β,γ-alkynyl-α-imino esters with complete atom economy is disclosed via chiral phosphoric acid catalysis. This protocol provides facile and efficient access to asymmetric construction of a broad range of axially chiral allene-derived naphthalenones bearing quaternary stereocenters in good yields with high diastereoselectivities and enantioselectivities.
Collapse
Affiliation(s)
| | - Zhao Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
25
|
Basuli S, Sahu S, Saha S, Maji MS. Cp*Co(III)‐Catalyzed Dehydrative C2‐Prenylation of Pyrrole and Indole with Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Samrat Sahu
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Shuvendu Saha
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur West Bengal 721302 India
| |
Collapse
|
26
|
Jin L, Zhang P, Li Y, Yu X, Shi BF. Atroposelective Synthesis of Conjugated Diene-Based Axially Chiral Styrenes via Pd(II)-Catalyzed Thioether-Directed Alkenyl C-H Olefination. J Am Chem Soc 2021; 143:12335-12344. [PMID: 34340309 DOI: 10.1021/jacs.1c06236] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The efficient stereoselective synthesis of conjugated dienes, especially those with axial chirality, remains a great challenge. Herein, we report the highly atroposelective synthesis of axially chiral styrenes with a conjugated 1,3-diene scaffold via a Pd(II)-catalyzed thioether-directed alkenyl C-H olefination strategy. This strategy features easy operation, mild reaction conditions, high functional group tolerance (69 examples), complete Z-selectivity, and excellent enantioselectivities (up to 99% ee). Notably, the highly enantioselective synthesis of atropisomers with two stereogenic axes were also achieved using this strategy (up to 99% ee and 97:3 dr). Moreover, the reaction could be scaled up, and the resulting axially chiral styrenes could be easily oxidized into chiral sulfoxide derivatives with high diastereoselectivities, which showed great promise as a new type of sulfur-olefin ligand.
Collapse
Affiliation(s)
- Liang Jin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ya Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Yu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
27
|
Ghosh P, Chowdhury D, Dana S, Baidya M. Transition Metal Catalyzed Free-Amine (-NH 2 ) Directed C-H Bond Activation and Functionalization for Biaryl Frameworks. CHEM REC 2021; 21:3795-3817. [PMID: 34235831 DOI: 10.1002/tcr.202100158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
Transition-metal-catalyzed direct transformation of inert C-H bond has revolutionized the arsenal of main-stream organic synthesis, providing a new upfront to forge structurally enriched and biologically relevant scaffolds in a step- and atom-economical way. Past decades have accounted for the major developments in this realm, proclaiming excellent site-selectivity by exploiting a variety of coordinating directing groups (DGs). Consideration of versatile, abundant, sp3 -hybridized free-amine (-NH2 ) functionality for the same purpose has always been a formidable task owing to its innate reactivity. In recent years, free-amine functionality has emerged as a potent DG for a wide range of C-C and C-heteroatom bonds formations and annulation cascades. In this review article, we have discussed the advancements of free-amine directed C-H activation/functionalization reactions towards biaryl frameworks made within a decade (2012 to 2021).
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
28
|
Zhong R, Xu Y, Sun M, Wang Y. Palladium-Catalyzed Regioselective C-H Functionalization/Annulation Reaction of Amides and Allylbenzenes for the Synthesis of Isoquinolinones and Pyridinones. J Org Chem 2021; 86:5255-5264. [PMID: 33750119 DOI: 10.1021/acs.joc.1c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A regioselective C-H functionalization/annulation reaction of N-sulfonyl amides and allylbenzenes through a palladium-catalyzed C(sp2)-H allylation/aminopalladation/β-H elimination/isomerization sequence has been reported. Various aryl and alkenyl carboxamides are found to be efficient substrates to construct isoquinolinones and pyridinones in up to 96% yield. Using ambient air as the terminal oxidant is another advantage regarding environmental friendliness and operational simplicity.
Collapse
Affiliation(s)
- Rong Zhong
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Yong Xu
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yurong Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
29
|
Zhao Q, Peng C, Wang YT, Zhan G, Han B. Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00307k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Useful chiral biaryls have been constructed through rhodium and gold complex-catalyzed asymmetric benzannulation strategies.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Yu-Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| |
Collapse
|